login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047362
Numbers that are congruent to {2, 3, 4, 5} mod 7.
1
2, 3, 4, 5, 9, 10, 11, 12, 16, 17, 18, 19, 23, 24, 25, 26, 30, 31, 32, 33, 37, 38, 39, 40, 44, 45, 46, 47, 51, 52, 53, 54, 58, 59, 60, 61, 65, 66, 67, 68, 72, 73, 74, 75, 79, 80, 81, 82, 86, 87, 88, 89, 93, 94, 95, 96, 100, 101, 102, 103, 107, 108, 109, 110
OFFSET
1,1
FORMULA
G.f.: x*(2*x^2+3*x+2)*(x^2-x+1) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 03 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-7-3*(i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n))/8 where i=sqrt(-1).
a(2k) = A047389(k), a(2k-1) = A047348(k). (End)
MAPLE
A047362:=n->(14*n-7-3*(I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n))/8: seq(A047362(n), n=1..100); # Wesley Ivan Hurt, Jun 03 2016
MATHEMATICA
Select[Range[100], MemberQ[{2, 3, 4, 5}, Mod[#, 7]]&] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 4, 5, 9}, 60] (* Harvey P. Dale, Oct 03 2015 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [2, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 03 2016
CROSSREFS
Sequence in context: A158573 A194398 A047603 * A032969 A095906 A333050
KEYWORD
nonn,easy
STATUS
approved