OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
G.f.: x*(2*x^2+3*x+2)*(x^2-x+1) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 03 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-7-3*(i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n))/8 where i=sqrt(-1).
MAPLE
A047362:=n->(14*n-7-3*(I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n))/8: seq(A047362(n), n=1..100); # Wesley Ivan Hurt, Jun 03 2016
MATHEMATICA
Select[Range[100], MemberQ[{2, 3, 4, 5}, Mod[#, 7]]&] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 4, 5, 9}, 60] (* Harvey P. Dale, Oct 03 2015 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [2, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved