login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047373
Numbers that are congruent to {0, 1, 2, 3, 5} mod 7.
1
0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 35, 36, 37, 38, 40, 42, 43, 44, 45, 47, 49, 50, 51, 52, 54, 56, 57, 58, 59, 61, 63, 64, 65, 66, 68, 70, 71, 72, 73, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 91, 92
OFFSET
1,3
FORMULA
G.f.: x^2*(1+x+x^2+2*x^3+2*x^4)/ ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Aug 08 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = a(n-5) + 7 for n > 5.
a(n) = (35*n - 50 - 3*(n mod 5) + 2*((n+1) mod 5) + 2*((n+2) mod 5) + 2*((n+3) mod 5) - 3*((n+4) mod 5))/25.
a(5*k) = 7*k-2, a(5*k-1) = 7*k-4, a(5*k-2) = 7*k-5, a(5*k-3) = 7*k-6, a(5*k-4) = 7*k-7. (End)
MAPLE
A047373:=n->7*floor(n/5)+[(0, 1, 2, 3, 5)][(n mod 5)+1]: seq(A047373(n), n=0..100); # Wesley Ivan Hurt, Aug 08 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Aug 08 2016 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 5, 7}, 100] (* Vincenzo Librandi, Aug 08 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 1, 2, 3, 5]]; // Wesley Ivan Hurt, Aug 08 2016
CROSSREFS
Sequence in context: A055977 A180221 A111292 * A039048 A105764 A226811
KEYWORD
nonn,easy
STATUS
approved