login
A047433
Numbers that are congruent to {2, 4, 5, 6} mod 8.
1
2, 4, 5, 6, 10, 12, 13, 14, 18, 20, 21, 22, 26, 28, 29, 30, 34, 36, 37, 38, 42, 44, 45, 46, 50, 52, 53, 54, 58, 60, 61, 62, 66, 68, 69, 70, 74, 76, 77, 78, 82, 84, 85, 86, 90, 92, 93, 94, 98, 100, 101, 102, 106, 108, 109, 110, 114, 116, 117, 118, 122, 124
OFFSET
1,1
FORMULA
G.f.: x*(2+2*x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, May 26 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-3-i^(2*n)-(2-i)*i^(-n)-(2+i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047406(k), a(2k-1) = A047617(k). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (3-sqrt(2))*Pi/16 + log(2)/4 + sqrt(2)*log(sqrt(2)-1)/8. - Amiram Eldar, Dec 25 2021
MAPLE
A047433:=n->(8*n-3-I^(2*n)-(2-I)*I^(-n)-(2+I)*I^n)/4: seq(A047433(n), n=1..100); # Wesley Ivan Hurt, May 26 2016
MATHEMATICA
Select[Range[120], MemberQ[{2, 4, 5, 6}, Mod[#, 8]]&] (* Harvey P. Dale, Mar 04 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [2, 4, 5, 6]]; // Wesley Ivan Hurt, May 26 2016
CROSSREFS
Sequence in context: A257085 A334736 A265349 * A287332 A029465 A014871
KEYWORD
nonn,easy
STATUS
approved