login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250120 Coordination sequence for planar net 3.3.3.3.6 (also called the fsz net). 6132
1, 5, 9, 15, 19, 24, 29, 33, 39, 43, 48, 53, 57, 63, 67, 72, 77, 81, 87, 91, 96, 101, 105, 111, 115, 120, 125, 129, 135, 139, 144, 149, 153, 159, 163, 168, 173, 177, 183, 187, 192, 197, 201, 207, 211, 216, 221, 225, 231, 235 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

There are eleven uniform (or Archimedean) tilings (or planar nets), with vertex symbols 3^6, 3^4.6, 3^3.4^2, 3^2.4.3.4, 4^4, 3.4.6.4, 3.6.3.6, 6^3, 3.12^2, 4.6.12, and 4.8^2. Grünbaum and Shephard (1987) is the best reference.

a(n) is the number of vertices at graph distance n from any fixed vertex.

The Mathematica notebook can compute 30 or 40 iterations, and colors them with period 5. You could also change out images if you want to. These graphs are better for analyzing 5-iteration chunks of the pattern. You can see that under iteration all fragments of the circumferences are preserved in shape and translated outwards a distance approximately sqrt(21) (relative to small triangle edge), the length of a long diagonal of larger rhombus unit cell. The conjectured recurrence should follow from an analysis of how new pieces occur in between the translated pieces. - Bradley Klee, Nov 26 2014

REFERENCES

Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Fig. 2.1.5, p. 63.

Marjorie Senechal, Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995, Fig. 1.10, Section 1.3, pp. 13-16.

LINKS

Maurizio Paolini, Table of n, a(n) for n = 0..511

Darrah Chavey, Illustration of a(0)-a(12)

Jean-Guillaume Eon, Symmetry and Topology: The 11 Uninodal Planar Nets Revisited, Symmetry, 10 (2018), 13 pages, doi:10.3390/sym10020035. See Section 9.

Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers [updated version May 09 2020]

Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.

Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.

Tom Karzes, Tiling Coordination Sequences

Bradley Klee, Illustration of a(0)-a(7).

Bradley Klee, Mathematica notebook for A250120

Maurizio Paolini, C program for A250120

Reticular Chemistry Structure Resource, fsz

N. J. A. Sloane, Initial hand-drawn illustration of a(0)-a(5)

N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Grünbaum and Shephard (1977)]

N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).

FORMULA

Based on the computations of Darrah Chavey, Bradley Klee, and Maurizio Paolini, there is a strong conjecture that the first differences of this sequence are 4, 4, 6, 4, 5, 5, 4, 6, 4, 5, 5, 4, 6, 4, 5, 5, ..., that is, 4 followed by (4,6,4,5,5)  repeated.

This would imply that the sequence satisfies the recurrence:

for n > 2, a(n) = a(n-1) + { n == 0,3 (mod 5), 4; n == 4 (mod 5), 6; n == 1,2 (mod 5), 5 }

(from Darrah Chavey)

and has generating function

(x^2+x+1)*(x^4+3*x^3+3*x+1)/((x^4+x^3+x^2+x+1)*(x-1)^2)

(from N. J. A. Sloane).

All the above conjectures are true - for proof see link to my article with Chaim Goodman-Strauss. - N. J. A. Sloane, Jan 14 2018; link added Mar 26 2018

MATHEMATICA

CoefficientList[Series[(x^2+x+1)(x^4+3x^3+3x+1)/((x^4+x^3+x^2+x+1)(x-1)^2), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {1, 5, 9, 15, 19, 24, 29}, 60] (* Harvey P. Dale, May 05 2018 *)

PROG

Comments on the C program (see link) from Maurizio Paolini, Nov 23 2014: Basically what I do is deform the net onto the integral lattice, connect nodes aligned either horizontally, vertically or diagonally from northeast to southwest, marking as UNREACHABLE the nodes with coordinates (i, j) satisfying i + 2*j = 0 mod 7. Then the code computes the distance from each node to the central node of the grid.

CROSSREFS

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

For partial sums of the present sequence, see A250121.

Sequence in context: A315023 A315024 A315025 * A315026 A315027 A315028

Adjacent sequences:  A250117 A250118 A250119 * A250121 A250122 A250123

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, Nov 23 2014

EXTENSIONS

a(6)-a(10) from Bradley Klee, Nov 23 2014

a(11)-a(49) from Maurizio Paolini, Nov 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 01:40 EST 2020. Contains 338603 sequences. (Running on oeis4.)