This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047391 Numbers that are congruent to {1, 3, 5} mod 7. 3
 1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, 29, 31, 33, 36, 38, 40, 43, 45, 47, 50, 52, 54, 57, 59, 61, 64, 66, 68, 71, 73, 75, 78, 80, 82, 85, 87, 89, 92, 94, 96, 99, 101, 103, 106, 108, 110, 113, 115, 117, 120, 122, 124, 127, 129, 131, 134, 136, 138, 141 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA From Bruno Berselli, Mar 25 2011:  (Start) G.f.: x*(1+2*x+2*x^2+2*x^3)/((1-x)^2*(1+x+x^2)). a(n) = 7*floor((n-1)/3)+2*(n-1 mod 3)+1. a(n) = (1/3)*(7*n-5-A049347(n)). (End) From Wesley Ivan Hurt, Jun 13 2016: (Start) a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. a(n) = (21*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*Pi*n/3))/9. a(3k) = 7k-2, a(3k-1) = 7k-4, a(3k-2) = 7k-6. (End) a(n) = n - 1 + floor((4n-1)/3). - Wesley Ivan Hurt, Dec 27 2016 MAPLE A047391:=n->(21*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*Pi*n/3))/9: seq(A047391(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016 MATHEMATICA Select[Range[0, 150], MemberQ[{1, 3, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 13 2016 *) LinearRecurrence[{1, 0, 1, -1}, {1, 3, 5, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *) PROG (MAGMA) [n: n in [1..122] | n mod 7 in [1, 3, 5]]; // Bruno Berselli, Mar 25 2011 CROSSREFS Cf. A049347. Sequence in context: A184584 A191160 A189929 * A184655 A090846 A195170 Adjacent sequences:  A047388 A047389 A047390 * A047392 A047393 A047394 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 14:45 EDT 2019. Contains 328345 sequences. (Running on oeis4.)