login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047391
Numbers that are congruent to {1, 3, 5} mod 7.
3
1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, 29, 31, 33, 36, 38, 40, 43, 45, 47, 50, 52, 54, 57, 59, 61, 64, 66, 68, 71, 73, 75, 78, 80, 82, 85, 87, 89, 92, 94, 96, 99, 101, 103, 106, 108, 110, 113, 115, 117, 120, 122, 124, 127, 129, 131, 134, 136, 138, 141
OFFSET
1,2
FORMULA
From Bruno Berselli, Mar 25 2011: (Start)
G.f.: x*(1+2*x+2*x^2+2*x^3)/((1-x)^2*(1+x+x^2)).
a(n) = 7*floor((n-1)/3)+2*(n-1 mod 3)+1.
a(n) = (1/3)*(7*n-5-A049347(n)). (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*Pi*n/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-4, a(3k-2) = 7k-6. (End)
a(n) = n - 1 + floor((4n-1)/3). - Wesley Ivan Hurt, Dec 27 2016
MAPLE
A047391:=n->(21*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*Pi*n/3))/9: seq(A047391(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{1, 3, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 13 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {1, 3, 5, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
PROG
(Magma) [n: n in [1..122] | n mod 7 in [1, 3, 5]]; // Bruno Berselli, Mar 25 2011
CROSSREFS
Cf. A049347.
Sequence in context: A342871 A191160 A189929 * A184655 A090846 A195170
KEYWORD
nonn,easy
STATUS
approved