login
A047409
Numbers that are congruent to {0, 1, 4, 6} mod 8.
2
0, 1, 4, 6, 8, 9, 12, 14, 16, 17, 20, 22, 24, 25, 28, 30, 32, 33, 36, 38, 40, 41, 44, 46, 48, 49, 52, 54, 56, 57, 60, 62, 64, 65, 68, 70, 72, 73, 76, 78, 80, 81, 84, 86, 88, 89, 92, 94, 96, 97, 100, 102, 104, 105, 108, 110, 112, 113, 116, 118, 120, 121, 124
OFFSET
1,3
COMMENTS
All squares and the products of any terms belong to the sequence. This sequence (n > 1) is closed under multiplication. - Klaus Purath, Feb 13 2023
FORMULA
G.f.: x^2*(1 + 3*x + 2*x^2 + 2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = (8*n - 9 - i^(2n) + i^(-n) + i^n)/4 where i=sqrt(-1).
a(2k) = A047452(k), a(2k-1) = A008586(k-1) for k > 0. (End)
E.g.f.: (4 + cos(x) + 4*(x - 1)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*Pi/16 + (10 - sqrt(2))*log(2)/16 + sqrt(2)*log(2 + sqrt(2))/8. - Amiram Eldar, Dec 20 2021
a(n) = 2*(n-1) + floor((n+1)/4) - floor((n+2)/4). - Ridouane Oudra, Aug 19 2024
MAPLE
A047409:=n->(8*n-9-I^(2*n)+I^(-n)+I^n)/4: seq(A047409(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
MATHEMATICA
Select[Range[0, 110], MemberQ[{0, 1, 4, 6}, Mod[#, 8]]&] (* Harvey P. Dale, Sep 28 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 4, 6]]; // Wesley Ivan Hurt, May 24 2016
CROSSREFS
Sequence in context: A353355 A231573 A327204 * A161576 A327446 A100425
KEYWORD
nonn,easy
STATUS
approved