OFFSET
0,3
COMMENTS
Same as A113874 without its first two terms. - Jonathan Sondow, Aug 16 2006
REFERENCES
CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
W. J. LeVeque, Fundamentals of Number Theory. Addison-Wesley, Reading, MA, 1977, p. 240.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Eric W. Weisstein, Table of n, a(n) for n = 0..1000 (first 200 terms from T. D. Noe)
L. Bayon, P. Fortuny, J. M. Grau, M. M. Ruiz, M. A. Oller-Marcen, The Best-or-Worst and the Postdoc problems with random number of candidates, arXiv:1809.06390 [math.PR], 2018.
E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
C. Elsner, Series of Error Terms for Rational Approximations of Irrational Numbers , J. Int. Seq. 14 (2011) # 11.1.4
C. Elsner, M. Stein, On Error Sum Functions Formed by Convergents of Real Numbers, J. Int. Seq. 14 (2011) # 11.8.6
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641 (article), 114 (2007) 659 (addendum).
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010; arXiv:0709.0671 [math.NT], 2007-2009.
Eric Weisstein's World of Mathematics, e Continued Fraction
Eric Weisstein's World of Mathematics, Sultan's Dowry Problem
EXAMPLE
2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, 2721/1001, 23225/8544, 25946/9545, 49171/18089, 517656/190435, 566827/208524, 1084483/398959, 13580623/4996032, 14665106/5394991, 28245729/10391023, 410105312/150869313, 438351041/161260336, 848456353/312129649, ...
MAPLE
Digits := 60: E := exp(1); convert(evalf(E), confrac, 50, 'cvgts'): cvgts;
MATHEMATICA
Denominator[Convergents[E, 40]] (* T. D. Noe, Oct 12 2011 *)
Denominator[Table[Piecewise[{
{Hypergeometric1F1[-1 - n/3, -1 - (2 n)/3, 1]/Hypergeometric1F1[-(n/3), -1 - (2 n)/3, -1], Mod[n, 3] == 0},
{Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), 1]/Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), -1], Mod[n, 3] == 1},
{Hypergeometric1F1[1/3 (-1 - n), 1 - (2 (4 + n))/3, 1]/Hypergeometric1F1[1/3 (-4 - n), 1 - (2 (4 + n))/3, -1], Mod[n, 3] == 2}
}], {n, 0, 30}]] (* Eric W. Weisstein, Sep 09 2013 *)
Table[Piecewise[{
{(1 + (2 n)/3)!/(n/3)! Hypergeometric1F1[-(n/3), -1 - (2 n)/3, -1], Mod[n, 3] == 0},
{((2 (2 + n))/3)!/((2 + n)/3)! Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), -1], Mod[n, 3] == 1},
{((4 + n) (5/3 + (2 n)/3)! )/(3 ((4 + n)/3)!) Hypergeometric1F1[1/3 (-4 - n), 1 - (2 (4 + n))/3, -1], Mod[n, 3] == 2}
}], {n, 0, 30}] (* Eric W. Weisstein, Sep 10 2013 *)
CROSSREFS
KEYWORD
nonn,easy,nice,frac
AUTHOR
STATUS
approved