OFFSET
1,1
COMMENTS
Read as decimal fraction 1100010... in any base > 1 (arbitrary decimal point) Liouville's numbers are transcendental; read as a continued fraction it is also transcendental [G. H. Hardy and E. M. Wright, Th. 192].
REFERENCES
Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 89.
John H. Conway and Richard K. Guy, The Book of Numbers, pp. 239-241 (1996).
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 162.
T. W. Koerner, Fourier Analysis, Camb. Univ. Press 1988, p. 177.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 58.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 26.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..20000
J. Liouville, Communication, C. R. Acad. Sci. Paris 18, 883-885 and 993-995, 1844. [Pages 993-995 do not seem right]
J. Liouville, Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques, Journal de Mathématiques Pures et Appliquées 16, pp. 133-142, 1851.
Diego Marques and Carlos Gustavo Moreira, On variations of the Liouville constant which are also Liouville numbers, Proc. Japan Acad. Ser. A Math. Sci., Volume 92, Number 3 (2016), 39-40.
Michael Penn, One of the first transcendental numbers -- Liouville's Constant, YouTube video, 2022.
Burkard Polster, Liouville's number, the easiest transcendental and its clones, Mathologer video (2017).
Eric Weisstein's World of Mathematics, Liouville's Constant.
G. Xiao, Contfrac.
FORMULA
G.f.: Sum_{i>=1} x^Product_{j=1..i} j. - Jon Perry, Mar 31 2004
EXAMPLE
a(25) = a(26) = ... = a(119) = 0 because 4! = 24 and 5! = 120.
0.110001000000000000000001000000000000000000000000000000000000000000000....
MATHEMATICA
With[{nn=5}, ReplacePart[Table[0, {nn!}], Table[{n!}, {n, nn}]->1]] (* Harvey P. Dale, Jul 22 2012 *)
RealDigits[ Sum[1/10^n!, {n, 5}], 10, 105][[1]] (* Robert G. Wilson v, Aug 03 2018 *)
CoefficientList[1/x Sum[x^k!, {k, 1, 5}], x] (* Jean-François Alcover, Nov 02 2018 *)
PROG
(PARI) default(realprecision, 20080); x=10*suminf(n=1, 1.0/10^n!) + 1/10^20040; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b012245.txt", n, " ", d)); \\ Harry J. Smith, May 15 2009
(Python)
from itertools import count
def A012245(n):
c = 1
for i in count(1):
if (c:=c*i) >= n:
return int(c==n) # Chai Wah Wu, Jan 11 2023
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved