login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A019712 Continued fraction expansion of tribonacci constant A058265. 4
1, 1, 5, 4, 2, 305, 1, 8, 2, 1, 4, 6, 14, 3, 1, 13, 5, 1, 7, 23, 1, 16, 4, 1, 1, 1, 1, 1, 2, 17, 1, 3, 1, 1, 1, 29, 1, 6, 1, 3, 1, 1, 1, 1, 3, 2, 5, 1, 63, 2, 1, 2, 5, 1, 4, 11, 2, 2, 1, 1, 1, 1, 1, 2, 1, 9, 3, 3, 18, 1, 38, 2, 4, 1, 20, 3, 1, 1, 1, 5, 2, 2, 1, 1, 1, 44, 6, 3, 9, 1, 1, 1, 1, 3, 3, 1, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The only real root of the equation x^3 - x^2 - x - 1 = 0.

REFERENCES

David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 23.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000

G. Xiao, Contfrac

Index entries for continued fractions for constants

EXAMPLE

1.839286755214161132551852564... = 1 + 1/(1 + 1/(5 + 1/(4 + 1/(2 + ...)))). - Harry J. Smith, May 30 2009

MATHEMATICA

ContinuedFraction[ 1/3 + 1/3*(19 - 3*Sqrt[33])^(1/3) + 1/3*(19 + 3*Sqrt[33])^(1/3), 100]

PROG

(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(solve(x=1, 2, x^3 - x^2 - x - 1)); for (n=0, 20000, write("b019712.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 30 2009

CROSSREFS

Cf. A058265 (decimal expansion).

Sequence in context: A222307 A175838 A097960 * A020799 A199432 A073743

Adjacent sequences:  A019709 A019710 A019711 * A019713 A019714 A019715

KEYWORD

cofr,nonn

AUTHOR

Robert G. Wilson v, Dec 07 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 22:32 EDT 2019. Contains 323411 sequences. (Running on oeis4.)