

A181402


Total number of positive integers below 10^n requiring 7 positive cubes in their representation as sum of cubes.


9



1, 10, 73, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + a(n) + A181404(n) + A130130(n) = A002283(n)
An unpublished result of DeshouillersHennecartLandreau, combined with Lemma 3 from Bertault, RamarĂ©, & Zimmermann implies that a(4)a(34) are all 121. Probably a(n) = 121 for all n > 3.  Charles R Greathouse IV, Jan 23 2014


LINKS

Table of n, a(n) for n=1..34.
F. Bertault, O. RamarĂ©, and P. Zimmermann, On sums of seven cubes, Math. Comp. 68 (1999), pp. 13031310.
Eric W. Weisstein, MathWorld  Waring's Problem
Index entries for linear recurrences with constant coefficients, signature (1).


FORMULA

G.f.: x*(1+9*x+63*x^2+48*x^3)/(1x).  Colin Barker, May 04 2012


CROSSREFS

Cf. A018890
Sequence in context: A058111 A223120 A240275 * A003366 A161743 A016211
Adjacent sequences: A181399 A181400 A181401 * A181403 A181404 A181405


KEYWORD

nonn


AUTHOR

Martin Renner, Jan 28 2011


EXTENSIONS

a(5)a(7) from Lars Blomberg, May 04 2011
a(8)a(34) from Charles R Greathouse IV, Jan 23 2014


STATUS

approved



