This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004767 a(n) = 4*n + 3. 145
 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(12). Binary expansion ends 11. These the numbers for which zeta(2*x+1) needs just 2 terms to be evaluated. - Jorge Coveiro, Dec 16 2004 [This comment needs clarification] a(n) is the smallest k such that for every r from 0 to 2n - 1 there exist j and i, k >= j > i > 2n - 1, such that j - i == r (mod (2n - 1)), with (k, (2n - 1)) = (j,(2n - 1)) = (i, (2n - 1)) = 1. - Amarnath Murthy, Sep 24 2003 Complement of A004773. - Reinhard Zumkeller, Aug 29 2005 Any (4n+3)-dimensional manifold endowed with a mixed 3-Sasakian structure is an Einstein space with Einstein constant lambda = 4n + 2 [Theorem 3, p. 10 of Ianus et al.]. - Jonathan Vos Post, Nov 24 2008 Solutions to the equation x^(2*x) = 3*x (mod 4*x). - Farideh Firoozbakht, May 02 2010 Subsequence of A022544. - Vincenzo Librandi, Nov 20 2010 First differences of A084849. - Reinhard Zumkeller, Apr 02 2011 Numbers n such that {1, 2, 3, ..., n} is a losing position in the game of Nim. - Franklin T. Adams-Watters, Jul 16 2011 Numbers n such that there are no primes p that satisfy the relationship p XOR n = p + n. - Brad Clardy, Jul 22 2012 The XOR of all numbers from 1 to a(n) is 0. - David W. Wilson, Apr 21 2013 A089911(4*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013 First differences of A014105. - Ivan N. Ianakiev, Sep 21 2013 All triangular numbers in the sequence are congruent to {3, 7} mod 8. - Ivan N. Ianakiev, Nov 12 2013 Apart from the initial term, length of minimal path on an n-dimensional cubic lattice (n > 1) of side length 2, until a self-avoiding walk gets stuck. Construct a path connecting all 2n points orthogonally adjacent from the center, ending at the center. Starting at any point adjacent to the center, there are 2 steps to reach each of the remaining 2n - 1 points, resulting in path length 4n - 2 with a final step connecting the center, for a total path length of 4n - 1, comprising 4n points. - Matthew Lehman, Dec 10 2013 a(n-1), n >= 1, appears as first column in the triangles A238476 and A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014 For the Collatz Conjecture, we identify two types of odd numbers. This sequence contains all the ascenders: where (3*a(n) + 1) / 2 is odd and greater than a(n). See A016813 for the descenders. - Jaroslav Krizek, Jul 29 2016 LINKS Ivan Panchenko, Table of n, a(n) for n = 0..200 Guo-Niu Han, Enumeration of Standard Puzzles Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy] Stere Ianus, Mihai Visinescu and Gabriel-Eduard Vilcu, Hidden symmetries and Killing tensors on curved spaces, arXiv:0811.3478 [math-ph], 2008. - Jonathan Vos Post, Nov 24 2008 Tanya Khovanova, Recursive Sequences William A. Stein, Dimensions of the spaces S_k(Gamma_0(N)) William A. Stein, The modular forms database Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA G.f.: (3+x)/(1-x)^2. - Paul Barry, Feb 27 2003 a(n) = 2*a(n-1) - a(n-2) for n > 1, a(0) = 3, a(1) = 7. - Philippe Deléham, Nov 03 2008 a(n) = A017137(n)/2. - Reinhard Zumkeller, Jul 13 2010 a(n) = 8*n - a(n-1) + 2 for n > 0, a(0) = 3. - Vincenzo Librandi, Nov 20 2010 a(n) = A005408(A005408(n)). - Reinhard Zumkeller, Jun 27 2011 a(n) = 3 + A008586(n). - Omar E. Pol, Jul 27 2012 a(n) = A014105(n+1) - A014105(n). - Michel Marcus, Sep 21 2013 a(n) = A016813(n) + 2. - Jean-Bernard François, Sep 27 2013 a(n) = 4*n - 1, with offset 1. - Wesley Ivan Hurt, Mar 12 2014 From Ilya Gutkovskiy, Jul 29 2016: (Start) E.g.f.: (3 + 4*x)*exp(x). Sum_{n >= 0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2)-1))/(4*sqrt(2)) = A181049. (End) EXAMPLE G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ... MAPLE seq( 3+4*n, n=0..100 ); MATHEMATICA 4 Range - 1 (* Wesley Ivan Hurt, Jul 09 2014 *) PROG (Haskell) a004767 = (+ 3) . (* 4) a004767_list = [3, 7 ..]  -- Reinhard Zumkeller, Oct 03 2012 (MAGMA) [4*n+3: n in [0..50]]; // Wesley Ivan Hurt, Jul 09 2014 (PARI) a(n)=4*n+3 \\ Charles R Greathouse IV, Jul 28 2015 (PARI) Vec((3+x)/(1-x)^2 + O(x^200)) \\ Altug Alkan, Jan 15 2016 (Scala) (0 to 59).map(4 * _ + 3) // Alonso del Arte, Dec 12 2018 (Sage) [4*n+3 for n in range(50)] # G. C. Greubel, Dec 09 2018 (Python) for n in range(0, 50): print(4*n+3, end=', ') # Stefano Spezia, Dec 12 2018 CROSSREFS Cf. A008586, A016813, A016825, A017629, A008545 (partial products). Sequence in context: A103543 A172338 A189787 * A131098 A118894 A194397 Adjacent sequences:  A004764 A004765 A004766 * A004768 A004769 A004770 KEYWORD nonn,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 11:42 EDT 2019. Contains 327996 sequences. (Running on oeis4.)