login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047552 Numbers that are congruent to {2, 6, 7} mod 8. 1
2, 6, 7, 10, 14, 15, 18, 22, 23, 26, 30, 31, 34, 38, 39, 42, 46, 47, 50, 54, 55, 58, 62, 63, 66, 70, 71, 74, 78, 79, 82, 86, 87, 90, 94, 95, 98, 102, 103, 106, 110, 111, 114, 118, 119, 122, 126, 127, 130, 134, 135, 138, 142, 143, 146, 150, 151, 154, 158, 159 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

From Chai Wah Wu, May 29 2016: (Start)

a(n) = a(n-1) + a(n-3) - a(n-4).

G.f.: x*(x^3 + x^2 + 4*x + 2)/(x^4 - x^3 - x + 1). (End)

From Wesley Ivan Hurt, Jun 10 2016: (Start)

a(n) = (24*n-3-6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9.

a(3k) = 8k-1, a(3k-1) = 8k-2, a(3k-2) = 8k-6. (End)

MAPLE

A047552:=n->(24*n-3-6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047552(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016

MATHEMATICA

LinearRecurrence[{1, 0, 1, -1}, {2, 6, 7, 10}, 50] (* G. C. Greubel, May 29 2016 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 8 in [2, 6, 7]]; // Wesley Ivan Hurt, Jun 10 2016

CROSSREFS

Sequence in context: A180626 A061943 A029507 * A287453 A287449 A287688

Adjacent sequences:  A047549 A047550 A047551 * A047553 A047554 A047555

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 16:08 EST 2017. Contains 295003 sequences.