

A047552


Numbers that are congruent to {2, 6, 7} mod 8.


1



2, 6, 7, 10, 14, 15, 18, 22, 23, 26, 30, 31, 34, 38, 39, 42, 46, 47, 50, 54, 55, 58, 62, 63, 66, 70, 71, 74, 78, 79, 82, 86, 87, 90, 94, 95, 98, 102, 103, 106, 110, 111, 114, 118, 119, 122, 126, 127, 130, 134, 135, 138, 142, 143, 146, 150, 151, 154, 158, 159
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).


FORMULA

From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n1) + a(n3)  a(n4).
G.f.: x*(x^3 + x^2 + 4*x + 2)/(x^4  x^3  x + 1). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n36*cos(2*n*Pi/3)4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k1, a(3k1) = 8k2, a(3k2) = 8k6. (End)


MAPLE

A047552:=n>(24*n36*cos(2*n*Pi/3)4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047552(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016


MATHEMATICA

LinearRecurrence[{1, 0, 1, 1}, {2, 6, 7, 10}, 50] (* G. C. Greubel, May 29 2016 *)


PROG

(MAGMA) [n : n in [0..150]  n mod 8 in [2, 6, 7]]; // Wesley Ivan Hurt, Jun 10 2016


CROSSREFS

Sequence in context: A180626 A061943 A029507 * A287453 A287449 A287688
Adjacent sequences: A047549 A047550 A047551 * A047553 A047554 A047555


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


STATUS

approved



