OFFSET
1,2
COMMENTS
Or, numbers that are not multiples of 8. - Benoit Cloitre, Jul 11 2009
More generally the sequence of numbers not divisible by some fixed integer m >= 2 is given by a(n, m) = n - 1 + floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009
Complement of A008590. - Reinhard Zumkeller, Nov 30 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
FORMULA
a(n) = n - 1 + floor((n+6)/7). - Benoit Cloitre, Jul 11 2009
A168181(a(n)) = 1. - Reinhard Zumkeller, Nov 30 2009
From R. J. Mathar, Mar 08 2011: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
G.f.: x*(1+x)*(1+x^2)*(1+x^4) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). (End)
a(n) = A207481(n) for n <= 70. - Reinhard Zumkeller, Feb 18 2012
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = (56*n - 28 + (n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) - 6*((n+6) mod 7))/49.
a(7k) = 8k-1, a(7k-1) = 8k-2, a(7k-2) = 8k-3, a(7k-3) = 8k-4, a(7k-4) = 8k-5, a(7k-5) = 8k-6, a(7k-6) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*sqrt(sqrt(2)+2) - 2*sqrt(2) - 1)*Pi/16. - Amiram Eldar, Dec 28 2021
MAPLE
A047592:=n->8*floor(n/7)+[1, 2, 3, 4, 5, 6, 7][(n mod 7)+1]: seq(A047592(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
MATHEMATICA
Complement[Range[88], 8Range[11]] (* Harvey P. Dale, Jan 22 2011 *)
CoefficientList[Series[(1 + x)*(1 + x^2)*(1 + x^4)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jan 06 2013 *)
PROG
(PARI) a(n)=n-1+floor((n+6)/7) \\ Benoit Cloitre, Jul 11 2009
(Magma) [ n: n in [0..100] | n mod 8 in {1, 2, 3, 4, 5, 6, 7} ]; // Vincenzo Librandi, Dec 25 2010
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved