login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047209 Numbers that are congruent to {1, 4} mod 5. 49
1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 71, 74, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 101, 104, 106, 109, 111, 114, 116, 119, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 154 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 72 ).

Numbers n such that Kronecker(5,n)==mu(gcd(5,n)). - Jon Perry, Sep 17 2002

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore (2*h*n+(h-4)*(-1)^n-h)/4)^2-1=0 (mod h); in our case, a(n)^2-1=0 (mod 5). - Bruno Berselli, Nov 17 2010

The sum of the alternating series (-1)^(n+1)/a(n) from n=1 to infinity is Pi/5*cot(Pi/5), that is 1/5*sqrt(1+2/sqrt(5))*Pi. - Jean-Fran├žois Alcover, May 03 2013

These numbers appear in the product of a Rogers-Ramanujan identity. See A003114 also for references. - Wolfdieter Lang, Oct 29 2016

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

William A. Stein, The modular forms database

Eric Weisstein's World of Mathematics, Determined by Spectrum

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

G.f.: (1+3x+x^2)/((1-x)(1-x^2)).

a(n) = floor((5n-2)/2). - corrected by Reinhard Zumkeller, Jul 19 2013

a(1)=1, a(n)=5(n-1)-a(n-1). - Benoit Cloitre, Apr 12 2003

From Bruno Berselli, Nov 17 2010: (Start)

a(n) = (10*n+(-1)^n-5)/4.

a(n)-a(n-1)-a(n-2)+a(n-3)=0 for n>3.

a(n) = a(n-2)+5 for n>2.

a(n) = 5*A000217(n-1)+1 - 2*sum(a(i), i=1..n-1) for n>1.

a(n)^2 = 5*A036666(n)+1 (cf. also Comments). (End)

a(n) = 5*floor(n/2)+(-1)^(n+1). - Gary Detlefs, Dec 29 2011

MAPLE

seq(floor(5*k/2)-1, k=1..100); # Wesley Ivan Hurt, Sep 27 2013

MATHEMATICA

Select[Range[0, 200], MemberQ[{1, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)

PROG

(Haskell)

a047209 = (flip div 2) . (subtract 2) . (* 5)

a047209_list = 1 : 4 : (map (+ 5) a047209_list)

-- Reinhard Zumkeller, Jul 19 2013, Jan 05 2011

(PARI) a(n)=(10*n+(-1)^n-5)/4 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A000566, A036666, A003114, A203776, A047336, A047522, A056020, A090771, A175885, A091998, A175886, A175887.

Cf. A005408 (n=1 or 3 mod 4), A007310 (n=1 or 5 mod 6).

Cf. A045468 (primes), A032527 (partial sums).

Sequence in context: A190373 A010387 A010411 * A138812 A003259 A020935

Adjacent sequences:  A047206 A047207 A047208 * A047210 A047211 A047212

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Edited by Michael Somos, Sep 22, 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 30 16:27 EDT 2017. Contains 284302 sequences.