login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175886 Numbers that are congruent to {1, 12} mod 13. 13
1, 12, 14, 25, 27, 38, 40, 51, 53, 64, 66, 77, 79, 90, 92, 103, 105, 116, 118, 129, 131, 142, 144, 155, 157, 168, 170, 181, 183, 194, 196, 207, 209, 220, 222, 233, 235, 246, 248, 259, 261, 272, 274, 285, 287, 298, 300, 311, 313, 324, 326, 337, 339, 350 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2-1 == 0 (mod 13).

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

G.f.: x*(1+11*x+x^2)/((1+x)*(1-x)^2).

a(n) = (26*n+9*(-1)^n-13)/4.

a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).

a(n) = a(n-2)+13.

a(n) = 13*A000217(n-1)+1 - 2*sum(a(i), i=1..n-1) for n>1.

MATHEMATICA

Select[Range[1, 350], MemberQ[{1, 12}, Mod[#, 13]]&] (* Bruno Berselli, Feb 29 2012 *)

CoefficientList[Series[(1 + 11 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)

LinearRecurrence[{1, 1, -1}, {1, 12, 14}, 60] (* Harvey P. Dale, Oct 23 2015 *)

PROG

(Haskell)

a175886 n = a175886_list !! (n-1)

a175886_list = 1 : 12 : map (+ 13) a175886_list

-- Reinhard Zumkeller, Jan 07 2012

(MAGMA) [n: n in [1..350] | n mod 13 in [1, 12]]; // Bruno Berselli, Feb 29 2012

(MAGMA) [(26*n+9*(-1)^n-13)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013

(PARI) a(n)=(26*n+9*(-1)^n-13)/4 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A091998, A113801, A005408, A047209, A007310, A047336, A047522, A056020, A090771, A175885, A175887.

Cf. A195045 (partial sums).

Sequence in context: A229966 A101557 A019292 * A181451 A022326 A307167

Adjacent sequences:  A175883 A175884 A175885 * A175887 A175888 A175889

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Oct 08 2010 - Nov 17 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 05:51 EDT 2019. Contains 327212 sequences. (Running on oeis4.)