login
A175887
Numbers that are congruent to {1, 14} mod 15.
13
1, 14, 16, 29, 31, 44, 46, 59, 61, 74, 76, 89, 91, 104, 106, 119, 121, 134, 136, 149, 151, 164, 166, 179, 181, 194, 196, 209, 211, 224, 226, 239, 241, 254, 256, 269, 271, 284, 286, 299, 301, 314, 316, 329, 331, 344, 346, 359, 361, 374, 376, 389, 391, 404
OFFSET
1,2
COMMENTS
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in this case, a(n)^2-1==0 (mod 15).
FORMULA
G.f.: x*(1+13*x+x^2)/((1+x)*(1-x)^2).
a(n) = (30*n+11*(-1)^n-15)/4.
a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).
a(n) = 15*A000217(n-1) -2*sum(a(i), i=1..n-1) +1 for n>1.
a(n) = A047209(A047225(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/15)*cot(Pi/15) = A019693 * A019976 / 10. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((30*x - 15)*exp(x) + 11*exp(-x))/4. - David Lovler, Sep 05 2022
MATHEMATICA
Select[Range[1, 450], MemberQ[{1, 14}, Mod[#, 15]]&]
CoefficientList[Series[(1 + 13 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)
PROG
(Magma) [n: n in [1..450] | n mod 15 in [1, 14]];
(Haskell)
a175887 n = a175887_list !! (n-1)
a175887_list = 1 : 14 : map (+ 15) a175887_list
-- Reinhard Zumkeller, Jan 07 2012
(Magma) [(30*n+11*(-1)^n-15)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
(PARI) a(n)=(30*n+11*(-1)^n-15)/4 \\ Charles R Greathouse IV, Sep 28 2015
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Oct 08 2010 - Nov 17 2010
STATUS
approved