login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195045
Concentric 13-gonal numbers.
8
0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
OFFSET
0,3
COMMENTS
Also concentric tridecagonal numbers or concentric triskaidecagonal numbers.
Partial sums of A175886. - Reinhard Zumkeller, Jan 07 2012
FORMULA
a(n) = 13*n^2/4+9*((-1)^n-1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+11*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069126(n+1). (End)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. - Wesley Ivan Hurt, Nov 22 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(3*Pi/(2*sqrt(13)))*Pi/(3*sqrt(13)). - Amiram Eldar, Jan 16 2023
MAPLE
A195045:=n->13*n^2/4+9*((-1)^n-1)/8: seq(A195045(n), n=0..70); # Wesley Ivan Hurt, Nov 22 2015
MATHEMATICA
Table[13 n^2/4 + 9 ((-1)^n - 1)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Nov 22 2015 *)
PROG
(Magma) [13*n^2/4+9*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
(Haskell)
a195045 n = a195045_list !! n
a195045_list = scanl (+) 0 a175886_list
-- Reinhard Zumkeller, Jan 07 2012
(PARI) a(n)=13*n^2/4+9*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
(PARI) concat(0, Vec(-x*(1+11*x+x^2)/((1+x)*(x-1)^3) + O(x^50))) \\ Altug Alkan, Nov 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 27 2011
STATUS
approved