login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195047
Concentric 17-gonal numbers.
7
0, 1, 17, 35, 68, 103, 153, 205, 272, 341, 425, 511, 612, 715, 833, 953, 1088, 1225, 1377, 1531, 1700, 1871, 2057, 2245, 2448, 2653, 2873, 3095, 3332, 3571, 3825, 4081, 4352, 4625, 4913, 5203, 5508, 5815, 6137, 6461, 6800, 7141, 7497, 7855, 8228, 8603, 8993
OFFSET
0,3
COMMENTS
Also concentric heptadecagonal numbers or concentric heptakaidecagonal numbers.
FORMULA
a(n) = 17*n^2/4+13*((-1)^n-1)/8. [Typo fixed by Ivan Panchenko, Nov 08 2013]
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+15*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069130(n+1). (End)
From Bruno Berselli, Sep 29 2011: (Start)
a(n) = a(-n) = (34*n^2+13*(-1)^n-13)/8.
a(n) = A151978(A061925(n)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/102 + tan(sqrt(13/17)*Pi/2)*Pi/sqrt(221). - Amiram Eldar, Jan 16 2023
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 17, 35}, 50] (* Harvey P. Dale, Dec 23 2017 *)
PROG
(PARI) a(n)=17*n^2/4+13*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 27 2011
STATUS
approved