login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069130 Centered 17-gonal numbers: (17*n^2 - 17*n + 2)/2. 6
1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, 8433, 8977, 9538, 10116, 10711, 11323, 11952, 12598, 13261, 13941, 14638, 15352 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equals binomial transform of [1, 17, 17, 0, 0, 0, ...]. - Gary W. Adamson, Mar 26 2010

LINKS

Ivan Panchenko, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Centered Polygonal Numbers

Index entries for sequences related to centered polygonal numbers

Index entries for linear recurrences with constant coefficients, signature (3,-3,1)

FORMULA

a(n) = (17*n^2 - 17*n + 2)/2.

a(n) = 17*n + a(n-1) - 17 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010

G.f.: x*(1+15*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=52. - Harvey P. Dale, Jun 05 2011

Narayana transform (A001263) of [1, 17, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011

From Amiram Eldar, Jun 21 2020: (Start)

Sum_{n>=1} 1/a(n) = 2*Pi*tan(3*Pi/(2*sqrt(17)))/(3*sqrt(17)).

Sum_{n>=1} a(n)/n! = 19*e/2 - 1.

Sum_{n>=1} (-1)^n * a(n)/n! = 19/(2*e) - 1. (End)

EXAMPLE

a(5) = 171 because (17*5^2 - 17*5 + 2)/2 = (425 - 85 + 2)/2 = 342/2 = 171.

MAPLE

A069130:=n->(17*n^2 - 17*n + 2)/2; seq(A069130(n), n=1..50); # Wesley Ivan Hurt, Jun 09 2014

MATHEMATICA

FoldList[#1 + #2 &, 1, 17 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)

Table[(17n^2-17n+2)/2, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 18, 52}, 50] (* Harvey P. Dale, Jun 05 2011 *)

PROG

(PARI) a(n)=17*binomial(n, 2)+1 \\ Charles R Greathouse IV, Jun 05 2011

(MAGMA) [ (17*n^2 - 17*n + 2)/2 : n in [1..50] ]; // Wesley Ivan Hurt, Jun 09 2014

CROSSREFS

Cf. centered polygonal numbers listed in A069190.

Sequence in context: A051870 A262454 A175815 * A299071 A124711 A126372

Adjacent sequences:  A069127 A069128 A069129 * A069131 A069132 A069133

KEYWORD

easy,nice,nonn

AUTHOR

Terrel Trotter, Jr., Apr 07 2002

EXTENSIONS

Typo in formula fixed by Omar E. Pol, Dec 22 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)