The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069130 Centered 17-gonal numbers: (17*n^2 - 17*n + 2)/2. 6
 1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, 8433, 8977, 9538, 10116, 10711, 11323, 11952, 12598, 13261, 13941, 14638, 15352 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equals binomial transform of [1, 17, 17, 0, 0, 0, ...]. - Gary W. Adamson, Mar 26 2010 LINKS Ivan Panchenko, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Centered Polygonal Numbers Index entries for linear recurrences with constant coefficients, signature (3,-3,1) FORMULA a(n) = (17*n^2 - 17*n + 2)/2. a(n) = 17*n + a(n-1) - 17 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010 G.f.: x*(1+15*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=52. - Harvey P. Dale, Jun 05 2011 Narayana transform (A001263) of [1, 17, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011 From Amiram Eldar, Jun 21 2020: (Start) Sum_{n>=1} 1/a(n) = 2*Pi*tan(3*Pi/(2*sqrt(17)))/(3*sqrt(17)). Sum_{n>=1} a(n)/n! = 19*e/2 - 1. Sum_{n>=1} (-1)^n * a(n)/n! = 19/(2*e) - 1. (End) EXAMPLE a(5) = 171 because (17*5^2 - 17*5 + 2)/2 = (425 - 85 + 2)/2 = 342/2 = 171. MAPLE A069130:=n->(17*n^2 - 17*n + 2)/2; seq(A069130(n), n=1..50); # Wesley Ivan Hurt, Jun 09 2014 MATHEMATICA FoldList[#1 + #2 &, 1, 17 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *) Table[(17n^2-17n+2)/2, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 18, 52}, 50] (* Harvey P. Dale, Jun 05 2011 *) PROG (PARI) a(n)=17*binomial(n, 2)+1 \\ Charles R Greathouse IV, Jun 05 2011 (MAGMA) [ (17*n^2 - 17*n + 2)/2 : n in [1..50] ]; // Wesley Ivan Hurt, Jun 09 2014 CROSSREFS Cf. centered polygonal numbers listed in A069190. Sequence in context: A051870 A262454 A175815 * A299071 A124711 A126372 Adjacent sequences:  A069127 A069128 A069129 * A069131 A069132 A069133 KEYWORD easy,nice,nonn AUTHOR Terrel Trotter, Jr., Apr 07 2002 EXTENSIONS Typo in formula fixed by Omar E. Pol, Dec 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)