login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032528 Concentric hexagonal numbers: floor( 3*n^2 / 2 ). 44
0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601, 3750 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From Omar E. Pol, Aug 20 2011: (Start)

Also, cellular automaton on the hexagonal net. The sequence gives the number of "ON" cells in the structure after n-th stage. A007310 gives the first differences.  For a definition without words see the illustration of initial terms in the example section. Note that the cells become intermittent. A083577 gives the primes of this sequences.

Also, A033581 and A003154 interleaved.

Also, row sums of an infinite square array T(n,k) in which column k lists 2*k-1 zeros followed by the numbers A008458 (see example).  (End)

Sequence found by reading the line from 0, in the direction 0, 1,... and the same line from 0, in the direction 0, 6,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Main axis perpendicular to A045943 in the same spiral. - Omar E. Pol, Sep 08 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for sequences related to cellular automata

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

G.f.: (x+4*x^2+x^3)/(1-2*x+2*x^3-x^4) = x*(1+4*x+x^2)/((1+x)*(1-x)^3). a(n) = +2*a(n-1) -2*a(n-3) +1*a(n-4). - Joerg Arndt, Aug 22 2011

a(n) = (6*n^2+(-1)^n-1)/4. - Bruno Berselli, Aug 22 2011

a(n) = A184533(n), n >= 2. - Clark Kimberling, Apr 20 2012

First differences of A011934: a(n) = A011934(n) - A011934(n-1) for n>0. - Franz Vrabec, Feb 17 2013

EXAMPLE

From Omar E. Pol, Aug 20 2011: (Start)

Using the numbers A008458 we can write:

0, 1, 6, 12, 18, 24, 30, 36, 42,  48,  54, ...

0, 0, 0,  1,  6, 12, 18, 24, 30,  36,  42, ...

0, 0, 0,  0,  0,  1,  6, 12, 18,  24,  30, ...

0, 0, 0,  0,  0,  0,  0,  1,  6,  12,  18, ...

0, 0, 0,  0,  0,  0,  0,  0,  0,   1,   6, ...

And so on.

===========================================

The sums of the columns give this sequence:

0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, ...

...

Illustration of initial terms as concentric hexagons:

.

.                                         o o o o o

.                         o o o o        o         o

.             o o o      o       o      o   o o o   o

.     o o    o     o    o   o o   o    o   o     o   o

. o  o   o  o   o   o  o   o   o   o  o   o   o   o   o

.     o o    o     o    o   o o   o    o   o     o   o

.             o o o      o       o      o   o o o   o

.                         o o o o        o         o

.                                         o o o o o

.

. 1    6        13           24               37

.

(End)

MATHEMATICA

f[n_, m_] := Sum[Floor[n^2/k], {k, 1, m}]; t = Table[f[n, 2], {n, 1, 90}] (* Clark Kimberling, Apr 20 2012 *)

PROG

(MAGMA) [Floor(3*n^2/2): n in [0..50]]; // Vincenzo Librandi, Aug 21 2011

(Haskell)

a032528 n = a032528_list !! n

a032528_list = scanl (+) 0 a007310_list

-- Reinhard Zumkeller, Jan 07 2012

(PARI) a(n)=3*n^2\2 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A003154, A007310, A008458, A033581, A083577, A000326, A001318, A005449, A045943, A032527, A195041. Column 6 of A195040.

Sequence in context: A236577 A194126 A235450 * A058535 A131833 A101736

Adjacent sequences:  A032525 A032526 A032527 * A032529 A032530 A032531

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

New name and more terms a(41)-a(50) from Omar E. Pol, Aug 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 07:54 EDT 2017. Contains 283985 sequences.