The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036666 Numbers k such that 5*k + 1 is a square. 18
 0, 3, 7, 16, 24, 39, 51, 72, 88, 115, 135, 168, 192, 231, 259, 304, 336, 387, 423, 480, 520, 583, 627, 696, 744, 819, 871, 952, 1008, 1095, 1155, 1248, 1312, 1411, 1479, 1584, 1656, 1767, 1843, 1960, 2040, 2163, 2247, 2376, 2464, 2599, 2691 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Third differences are 4, -6, 8, -10, 12, -14, 16, -18, 20, -22, 24, -26, 28, ... X values of solutions to the equation 5*X^3 + X^2 = Y^2. - Mohamed Bouhamida, Nov 06 2007 Also, numbers 5*i^2 + 2*i for integer i. The characteristic function is A205633(n). - Jason Kimberley, Nov 15 2012 From Gary W. Adamson, Sep 22 2019: (Start) Match the values a(n) with the squares 5k + 1 as follows:    3,....7,....16,....24,...  .a, a, a, a,...   16,...36,....81,...121,...  (base). Then 1/5 in the matching base is equal to .a, a, a,... Example: 1/5 in base 36 is equal to .7, 7, 7, 7... Check: 7/36 + 7/36^2 = 259/1296 = .199845...; close to 1/5. (End) LINKS Jason Kimberley, Table of n, a(n) for n = 1..2000 S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math. 274 (2004), no. 1-3, 9-24. See D(q). R. Stephan, On the solutions to 'px+1 is square' Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA G.f.: x*(3 + 4*x + 3*x^2) / ((1 - x)*(1 - x^2)). a(n) has the form ((5*m + 1)^2 - 1)/5 if n is odd; a(n) has the form ((5*m + 4)^2 - 1)/5 if n is even. a(2*k) = k*(5*k + 2), a(2*k + 1) = 5*k^2 + 8*k + 3. - Mohamed Bouhamida, Nov 06 2007 a(n) = n^2 + n + ceiling(n/2)^2, (with offset 0). - Gary Detlefs, Feb 23 2010 From Bruno Berselli, Nov 27 2010: (Start) a(n) = (10*n*(n - 1)+(2*n - 1)*(-1)^n + 1)/8. 5*a(n) + 1 = A047209(n)^2. (End) a(n) = Sum_{k=0..n} k + A109043(k). - Jon Maiga, Nov 28 2018 E.g.f.: (exp(x)*(1 + 10*x^2) - exp(-x)*(1 + 2*x))/8. - Franck Maminirina Ramaharo, Nov 29 2018 MAPLE seq(n^2+n+ceil(n/2)^2, n=0..46); # Gary Detlefs, Feb 23 2010 MATHEMATICA (Select[ Range, Mod[ #, 5] == 1 || Mod[ #, 5] == 4 &]^2 - 1)/5 (* Robert G. Wilson v, Jun 23 2004 *) Flatten[Position[5*Range[0, 3000]+1, _?(IntegerQ[Sqrt[#]]&)]]-1 (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 3, 7, 16, 24}, 50] (* Harvey P. Dale, Feb 13 2018 *) Accumulate[Table[n + LCM[n, 2], {n, 0, 121}]] (* Jon Maiga, Nov 28 2018 *) PROG (PARI) a(n)=n^2+n+ceil(n/2)^2 (MAGMA) [(n-1)^2+(n-1)+Ceiling((n-1)/2)^2 : n in [1..50]]; // Wesley Ivan Hurt, Jun 05 2014 (GAP) List([1..50], n->(10*n*(n-1)+(2*n-1)*(-1)^n+1)/8); # Muniru A Asiru, Nov 28 2018 CROSSREFS Cf. A001082, A002378, A005563, A046092, A047209, A109043, A205633. Sequence in context: A116040 A218276 A221025 * A218359 A117491 A211379 Adjacent sequences:  A036663 A036664 A036665 * A036667 A036668 A036669 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 11 1999 EXTENSIONS Better description and additional formula from Santi Spadaro, Jul 12 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 14 03:42 EDT 2020. Contains 335716 sequences. (Running on oeis4.)