login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036666 Numbers k such that 5*k + 1 is a square. 18
0, 3, 7, 16, 24, 39, 51, 72, 88, 115, 135, 168, 192, 231, 259, 304, 336, 387, 423, 480, 520, 583, 627, 696, 744, 819, 871, 952, 1008, 1095, 1155, 1248, 1312, 1411, 1479, 1584, 1656, 1767, 1843, 1960, 2040, 2163, 2247, 2376, 2464, 2599, 2691 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Third differences are 4, -6, 8, -10, 12, -14, 16, -18, 20, -22, 24, -26, 28, ...

X values of solutions to the equation 5*X^3 + X^2 = Y^2. - Mohamed Bouhamida, Nov 06 2007

Also, numbers 5*i^2 + 2*i for integer i. The characteristic function is A205633(n). - Jason Kimberley, Nov 15 2012

From Gary W. Adamson, Sep 22 2019: (Start)

Match the values a(n) with the squares 5k + 1 as follows:

3,....7,....16,....24,... .a, a, a, a,...

16,...36,....81,...121,... (base).

Then 1/5 in the matching base is equal to .a, a, a,...

Example: 1/5 in base 36 is equal to .7, 7, 7, 7...

Check: 7/36 + 7/36^2 = 259/1296 = .199845...; close to 1/5.

(End)

LINKS

Jason Kimberley, Table of n, a(n) for n = 1..2000

S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math., Vol. 274, No. 1-3 (2004), pp. 9-24. See D(q).

Ralf Stephan, On the solutions to 'px+1 is square'.

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

G.f.: x*(3 + 4*x + 3*x^2) / ((1 - x)*(1 - x^2)).

a(n) has the form ((5*m + 1)^2 - 1)/5 if n is odd; a(n) has the form ((5*m + 4)^2 - 1)/5 if n is even.

a(2*k) = k*(5*k + 2), a(2*k + 1) = 5*k^2 + 8*k + 3. - Mohamed Bouhamida, Nov 06 2007

a(n) = n^2 + n + ceiling(n/2)^2, (with offset 0). - Gary Detlefs, Feb 23 2010

From Bruno Berselli, Nov 27 2010: (Start)

a(n) = (10*n*(n - 1)+(2*n - 1)*(-1)^n + 1)/8.

5*a(n) + 1 = A047209(n)^2. (End)

a(n) = Sum_{k=0..n} k + A109043(k). - Jon Maiga, Nov 28 2018

E.g.f.: (exp(x)*(1 + 10*x^2) - exp(-x)*(1 + 2*x))/8. - Franck Maminirina Ramaharo, Nov 29 2018

From Amiram Eldar, Mar 15 2022: (Start)

Sum_{n>=2} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/2.

Sum_{n>=2} (-1)^n/a(n) = 5*(log(5)-1)/4 - sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). (End)

MAPLE

seq(n^2+n+ceil(n/2)^2, n=0..46); # Gary Detlefs, Feb 23 2010

MATHEMATICA

(Select[ Range[121], Mod[ #, 5] == 1 || Mod[ #, 5] == 4 &]^2 - 1)/5 (* Robert G. Wilson v, Jun 23 2004 *)

Flatten[Position[5*Range[0, 3000]+1, _?(IntegerQ[Sqrt[#]]&)]]-1 (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 3, 7, 16, 24}, 50] (* Harvey P. Dale, Feb 13 2018 *)

Accumulate[Table[n + LCM[n, 2], {n, 0, 121}]] (* Jon Maiga, Nov 28 2018 *)

PROG

(PARI) a(n)=n^2+n+ceil(n/2)^2

(Magma) [(n-1)^2+(n-1)+Ceiling((n-1)/2)^2 : n in [1..50]]; // Wesley Ivan Hurt, Jun 05 2014

(GAP) List([1..50], n->(10*n*(n-1)+(2*n-1)*(-1)^n+1)/8); # Muniru A Asiru, Nov 28 2018

CROSSREFS

Cf. A001082, A001622, A002378, A005563, A046092, A047209, A109043, A205633.

Sequence in context: A116040 A218276 A221025 * A218359 A117491 A211379

Adjacent sequences: A036663 A036664 A036665 * A036667 A036668 A036669

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 11 1999

EXTENSIONS

Better description and additional formula from Santi Spadaro, Jul 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 17:16 EST 2022. Contains 358588 sequences. (Running on oeis4.)