The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036666 Numbers k such that 5*k + 1 is a square. 18
 0, 3, 7, 16, 24, 39, 51, 72, 88, 115, 135, 168, 192, 231, 259, 304, 336, 387, 423, 480, 520, 583, 627, 696, 744, 819, 871, 952, 1008, 1095, 1155, 1248, 1312, 1411, 1479, 1584, 1656, 1767, 1843, 1960, 2040, 2163, 2247, 2376, 2464, 2599, 2691 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Third differences are 4, -6, 8, -10, 12, -14, 16, -18, 20, -22, 24, -26, 28, ... X values of solutions to the equation 5*X^3 + X^2 = Y^2. - Mohamed Bouhamida, Nov 06 2007 Also, numbers 5*i^2 + 2*i for integer i. The characteristic function is A205633(n). - Jason Kimberley, Nov 15 2012 From Gary W. Adamson, Sep 22 2019: (Start) Match the values a(n) with the squares 5k + 1 as follows: 3,....7,....16,....24,... .a, a, a, a,... 16,...36,....81,...121,... (base). Then 1/5 in the matching base is equal to .a, a, a,... Example: 1/5 in base 36 is equal to .7, 7, 7, 7... Check: 7/36 + 7/36^2 = 259/1296 = .199845...; close to 1/5. (End) LINKS Jason Kimberley, Table of n, a(n) for n = 1..2000 S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math., Vol. 274, No. 1-3 (2004), pp. 9-24. See D(q). Ralf Stephan, On the solutions to 'px+1 is square'. Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA G.f.: x*(3 + 4*x + 3*x^2) / ((1 - x)*(1 - x^2)). a(n) has the form ((5*m + 1)^2 - 1)/5 if n is odd; a(n) has the form ((5*m + 4)^2 - 1)/5 if n is even. a(2*k) = k*(5*k + 2), a(2*k + 1) = 5*k^2 + 8*k + 3. - Mohamed Bouhamida, Nov 06 2007 a(n) = n^2 + n + ceiling(n/2)^2, (with offset 0). - Gary Detlefs, Feb 23 2010 From Bruno Berselli, Nov 27 2010: (Start) a(n) = (10*n*(n - 1)+(2*n - 1)*(-1)^n + 1)/8. 5*a(n) + 1 = A047209(n)^2. (End) a(n) = Sum_{k=0..n} k + A109043(k). - Jon Maiga, Nov 28 2018 E.g.f.: (exp(x)*(1 + 10*x^2) - exp(-x)*(1 + 2*x))/8. - Franck Maminirina Ramaharo, Nov 29 2018 From Amiram Eldar, Mar 15 2022: (Start) Sum_{n>=2} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/2. Sum_{n>=2} (-1)^n/a(n) = 5*(log(5)-1)/4 - sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). (End) MAPLE seq(n^2+n+ceil(n/2)^2, n=0..46); # Gary Detlefs, Feb 23 2010 MATHEMATICA (Select[ Range[121], Mod[ #, 5] == 1 || Mod[ #, 5] == 4 &]^2 - 1)/5 (* Robert G. Wilson v, Jun 23 2004 *) Flatten[Position[5*Range[0, 3000]+1, _?(IntegerQ[Sqrt[#]]&)]]-1 (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 3, 7, 16, 24}, 50] (* Harvey P. Dale, Feb 13 2018 *) Accumulate[Table[n + LCM[n, 2], {n, 0, 121}]] (* Jon Maiga, Nov 28 2018 *) PROG (PARI) a(n)=n^2+n+ceil(n/2)^2 (Magma) [(n-1)^2+(n-1)+Ceiling((n-1)/2)^2 : n in [1..50]]; // Wesley Ivan Hurt, Jun 05 2014 (GAP) List([1..50], n->(10*n*(n-1)+(2*n-1)*(-1)^n+1)/8); # Muniru A Asiru, Nov 28 2018 CROSSREFS Cf. A001082, A001622, A002378, A005563, A046092, A047209, A109043, A205633. Sequence in context: A116040 A218276 A221025 * A218359 A117491 A211379 Adjacent sequences: A036663 A036664 A036665 * A036667 A036668 A036669 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 11 1999 EXTENSIONS Better description and additional formula from Santi Spadaro, Jul 12 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 17:16 EST 2022. Contains 358588 sequences. (Running on oeis4.)