The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047211 Numbers that are congruent to {2, 4} mod 5. 35
 2, 4, 7, 9, 12, 14, 17, 19, 22, 24, 27, 29, 32, 34, 37, 39, 42, 44, 47, 49, 52, 54, 57, 59, 62, 64, 67, 69, 72, 74, 77, 79, 82, 84, 87, 89, 92, 94, 97, 99, 102, 104, 107, 109, 112, 114, 117, 119, 122, 124, 127, 129, 132, 134, 137, 139, 142, 144, 147, 149, 152, 154, 157, 159, 162, 164, 167, 169, 172, 174, 177, 179, 182, 184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: n such that the characteristic polynomial of M(n) is irreducible over the rationals where M(n) is an n X n matrix with ones on the skew diagonal and below it and the skew line two positions above it and otherwise zeros; see example for one such matrix. Tested up to n=177. - Joerg Arndt, Aug 10 2011 LINKS Melvyn B. Nathanson, On the fractional parts of roots of positive real numbers, Amer. Math. Monthly, 120 (2013), 409-429 [see p. 417]. Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = a(n-1) +a(n-2) -a(n-3). a(n) = (10*n-3-(-1)^n)/4, (n>=1). [Corrected by Bruno Berselli, Sep 20 2010] a(n) = 5*floor((n-1)/2) +3 +(-1)^n. - Gary Detlefs, Mar 02 2010 G.f.: x*(2+2*x+x^2)/((1+x)*(1-x)^2). - Paul Barry, Sep 11 2008 a(n) = 5*n-a(n-1)-4 (with a(1)=2). - Vincenzo Librandi, Nov 18 2010 a(n) = floor((5*n-1)/2). - Gary Detlefs, May 14 2011 a(n) = 2*n + floor((n-1)/2). - Arkadiusz Wesolowski, Sep 19 2012 EXAMPLE The 7 X 7 matrix (dots for zeros): [....1.1] [...1.11] [..1.111] [.1.1111] [1.11111] [.111111]  has the characteristic polynomial x^7 - 5*x^6 - 4*x^5 + 15*x^4 + 5*x^3 - 11*x^2 - x + 1 which is irreducible over the field of rational numbers, and 7 is a term of the sequence. - Joerg Arndt, Aug 10 2011 MAPLE seq(5*floor((n-1)/2) +3 +(-1)^n, n=1..50); # Gary Detlefs, Mar 02 2010 MATHEMATICA Select[Range[0, 200], MemberQ[{2, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *) PROG (Haskell) a047211 n = a047211_list !! (n-1) a047211_list = filter ((`elem` [2, 4]) . (`mod` 5)) [1..] -- Reinhard Zumkeller, Oct 03 2012 (MAGMA) [Floor((5*n-1)/2): n in [1..50]]; // Wesley Ivan Hurt, May 25 2014 (PARI) a(n)=(5*n-1)\2 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A047209. Cf. A053685 (subsequence). Sequence in context: A329846 A067839 A329991 * A225000 A189677 A087733 Adjacent sequences:  A047208 A047209 A047210 * A047212 A047213 A047214 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 11 1999 EXTENSIONS Conjecture corrected by John M. Campbell, Aug 25 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 12:00 EST 2020. Contains 332135 sequences. (Running on oeis4.)