login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047206 Numbers that are congruent to {1, 3, 4} mod 5. 22
1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19, 21, 23, 24, 26, 28, 29, 31, 33, 34, 36, 38, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 58, 59, 61, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 79, 81, 83, 84, 86, 88, 89, 91, 93, 94, 96, 98, 99, 101, 103, 104, 106, 108 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..65.

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

G.f.: (1+2*x+x^2+x^3)/((1-x)^2*(1+x+x^2)).

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.

a(n)= 1+(5*n)/3-(i*sqrt(3) * (-1/2+(i*sqrt(3))/2)^n)/9+(i*sqrt(3)* (-1/2-(i*sqrt(3))/2)^n)/9. - Stephen Crowley, Feb 11 2007

a(n) = floor((5*n-1)/3). - Gary Detlefs, May 14 2011

From Wesley Ivan Hurt, Jun 14 2016: (Start)

a(n) = (15*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.

a(3k) = 5k-1, a(3k-1) = 5k-2, a(3k-2) = 5k-4. (End)

MAPLE

A047206:=n->(15*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9: seq(A047206(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016

MATHEMATICA

Select[Range[0, 200], MemberQ[{1, 3, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)

PROG

(MAGMA) [ n : n in [1..150] | n mod 5 in [1, 3, 4] ]; // Vincenzo Librandi, Mar 31 2011

(PARI) a(n)=(5*n-1)\3 \\ Charles R Greathouse IV, Jul 01 2013

CROSSREFS

Sequence in context: A182772 A059535 A061402 * A187474 A081031 A133280

Adjacent sequences:  A047203 A047204 A047205 * A047207 A047208 A047209

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 29 12:58 EDT 2016. Contains 276612 sequences.