The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047206 Numbers that are congruent to {1, 3, 4} mod 5. 22
 1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19, 21, 23, 24, 26, 28, 29, 31, 33, 34, 36, 38, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 58, 59, 61, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 79, 81, 83, 84, 86, 88, 89, 91, 93, 94, 96, 98, 99, 101, 103, 104, 106, 108 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA G.f.: (1+2*x+x^2+x^3)/((1-x)^2*(1+x+x^2)). a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. a(n)= 1+(5*n)/3-(i*sqrt(3) * (-1/2+(i*sqrt(3))/2)^n)/9+(i*sqrt(3)* (-1/2-(i*sqrt(3))/2)^n)/9. - Stephen Crowley, Feb 11 2007 a(n) = floor((5*n-1)/3). - Gary Detlefs, May 14 2011 From Wesley Ivan Hurt, Jun 14 2016: (Start) a(n) = (15*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9. a(3k) = 5k-1, a(3k-1) = 5k-2, a(3k-2) = 5k-4. (End) MAPLE A047206:=n->(15*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9: seq(A047206(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016 MATHEMATICA Select[Range[0, 200], MemberQ[{1, 3, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *) PROG (MAGMA) [ n : n in [1..150] | n mod 5 in [1, 3, 4] ]; // Vincenzo Librandi, Mar 31 2011 (PARI) a(n)=(5*n-1)\3 \\ Charles R Greathouse IV, Jul 01 2013 CROSSREFS Sequence in context: A059535 A061402 A330066 * A187474 A081031 A285681 Adjacent sequences:  A047203 A047204 A047205 * A047207 A047208 A047209 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 15:39 EST 2020. Contains 332307 sequences. (Running on oeis4.)