login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130779 a(0)=a(1)=1, a(2)=2, a(n)=0 for n >= 3. 7
1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse binomial transform of A002522. - R. J. Mathar, Jun 13 2008

Multiplicative with a(2)=2, a(2^e)=0 if e>1, a(p^e)=0 for odd prime p if e>=1. Dirichlet g.f. 1+2^(1-s). - R. J. Mathar, Jun 28 2011

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (1).

FORMULA

G.F.:1+x+2x^2

a(n)=[C((n+2)^2,n+4) mod 2]+[C((n+1)^2,n+3) mod 2]+2*[C(n^2,n+2) mod 2] - Paolo P. Lava, Dec 19 2007

a(n) = A167666(n,0). - Philippe Deléham, Feb 18 2012

MATHEMATICA

PadRight[{1, 1, 2}, 120, 0] (* Harvey P. Dale, May 02 2015 *)

LinearRecurrence[{1}, {1, 1, 2, 0}, 105] (* Ray Chandler, Jul 15 2015 *)

PROG

(PARI) a(n)=if(n<3, max(n, 1), 0) \\ Charles R Greathouse IV, Dec 21 2011

CROSSREFS

Cf. A130706.

Sequence in context: A063665 A276306 A072507 * A130706 A000038 A063667

Adjacent sequences:  A130776 A130777 A130778 * A130780 A130781 A130782

KEYWORD

nonn,mult,easy

AUTHOR

Paul Curtz, Jul 14 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:32 EST 2017. Contains 295054 sequences.