login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008395
Coordination sequence for A_10 lattice.
3
1, 110, 3080, 40370, 322190, 1815506, 7925720, 28512110, 88206140, 241925530, 601585512, 1379301990, 2953859370, 5968878630, 11472968760, 21114177018, 37403270520, 64062783510, 106481351240, 172295622730, 272125000774, 420487598410
OFFSET
0,2
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, 1997; Zeit. f. Kristallographie, 212 (1997), 253-256.
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = 46189/90720*n^9 +26741/3024*n^7 +171457/4320*n^5 +111683/2268*n^3 +7381/630*n for n >= 1.
Sum_{d=1}^10 C(11, d) C(m/2-1, d-1) C(10-d+m/2, m/2), where norm m is always even. (Serra-Sagrista)
G.f.: (1 +100*x +2025*x^2 +14400*x^3 +44100*x^4 +63504*x^5 +44100*x^6 +14400*x^7 +2025*x^8 +100*x^9 +x^10)/(1-x)^10. - Colin Barker, Sep 26 2012
MAPLE
a:= n-> `if`(n=0, 1, 46189/90720*n^9+26741/3024*n^7+
171457/4320*n^5+111683/2268*n^3+7381/630*n):
seq(a(n), n=0..25);
MATHEMATICA
a[n_]:= If[n==0, 1, 11n(4199n^8 +72930n^6 +327327n^4 +406120n^2 +96624)/90720];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jan 07 2019 *)
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 110, 3080, 40370, 322190, 1815506, 7925720, 28512110, 88206140, 241925530, 601585512}, 30] (* Harvey P. Dale, Nov 27 2019 *)
PROG
(Magma) [1] cat [11*n*(4199*n^8 +72930*n^6 +327327*n^4 +406120*n^2 +96624)/90720: n in [1..40]]; // G. C. Greubel, May 27 2023
(SageMath) [11*n*(4199*n^8 +72930*n^6 +327327*n^4 +406120*n^2 +96624)//90720 +int(n==0) for n in range(41)] # G. C. Greubel, May 27 2023
CROSSREFS
Row 10 of A103881.
Sequence in context: A185536 A201833 A035836 * A201213 A250528 A251029
KEYWORD
nonn,easy
STATUS
approved