OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
G.f.: x*(1+x+3*x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-7-3*i^(2n)+(1-i)*i^(-n)+(1+i)*i^n)/8 where i=sqrt(-1).
E.g.f.: (4 - sin(x) + cos(x) + (7*x - 2)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016
MAPLE
A047325:=n->(14*n-7-3*I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/8: seq(A047325(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
MATHEMATICA
Table[(14n-7-3*I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 23 2016 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 5, 6, 8}, 80] (* Vincenzo Librandi, May 24 2016 *)
#+{1, 2, 5, 6}&/@(7*Range[0, 20])//Flatten (* Harvey P. Dale, Aug 16 2018 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [1, 2, 5, 6]]; // Wesley Ivan Hurt, May 23 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Wesley Ivan Hurt, May 23 2016
STATUS
approved