login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047383 Numbers that are congruent to {1, 5} mod 7. 11
1, 5, 8, 12, 15, 19, 22, 26, 29, 33, 36, 40, 43, 47, 50, 54, 57, 61, 64, 68, 71, 75, 78, 82, 85, 89, 92, 96, 99, 103, 106, 110, 113, 117, 120, 124, 127, 131, 134, 138, 141, 145, 148, 152, 155, 159, 162, 166, 169 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = ceiling((7*n+2)/2).

a(n) = 7*n-a(n-1)-8 (with a(1)=1). - Vincenzo Librandi, Aug 05 2010

From Paolo P. Lava, Aug 26 2010: (Start)

a(n) = (1/4)*((-1)^n + 14*n - 9) with n>=1.

a(n) = -2 + Sum_{k=1..n} (1/2)*(7+(-1)^k). (End)

G.f.  x*(1+4*x+2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011

a(1)=1, a(2)=5, a(3)=8; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Dec 24 2012

From Wesley Ivan Hurt, Nov 10 2013: (Start)

a(n) = 4*n - floor((n-1)/2) - 3.

a(2*k-1) = 7*k-6, a(2*k) = 7*k-2. (End)

MAPLE

A047383:=n->((-1)^n+14*n-9)/4; seq(A047383(n), n=1..100); # Wesley Ivan Hurt, Nov 10 2013

MATHEMATICA

Flatten[(#+{1, 5})&/@(7Range[0, 25])] (* or *) LinearRecurrence[ {1, 1, -1}, {1, 5, 8}, 80] (* Harvey P. Dale, Dec 24 2012 *)

PROG

(PARI) a(n)=7*n\2-2 \\ Charles R Greathouse IV, Jun 11 2015

CROSSREFS

Cf. A001106.

Sequence in context: A108173 A214858 A186276 * A322534 A314402 A133795

Adjacent sequences:  A047380 A047381 A047382 * A047384 A047385 A047386

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 21:49 EDT 2019. Contains 321352 sequences. (Running on oeis4.)