login
A014538
Continued fraction for Catalan's constant 1 - 1/9 + 1/25 - 1/49 + 1/81 - ...
11
0, 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, 9, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 11, 1, 1, 1, 6, 1, 12, 1, 4, 7, 1, 1, 2, 5, 1, 5, 9, 1, 1, 1, 1, 33, 4, 1, 1, 3, 5, 3, 2, 1, 2, 1, 2, 1, 7, 6, 3, 1, 3, 3, 1, 1, 2, 1, 14, 1, 4, 4, 1, 2, 4, 1, 17, 4, 1, 14, 1, 1, 1, 12, 1
OFFSET
0,3
COMMENTS
First 4,851,389,025 terms computed by Eric W. Weisstein, Aug 07 2013.
LINKS
G. J. Fee, Computation of Catalan's constant using Ramanujan's formula, in Proc. Internat. Symposium on Symbolic and Algebraic Computation (ISSAC '90). 1990, pp. 157-160.
Eric Weisstein's World of Mathematics, Catalan's Constant Continued Fraction
G. Xiao, Contfrac
EXAMPLE
C = 0.91596559417721901505... = 0 + 1/(1 + 1/(10 + 1/(1 + 1/(8 + ...))))
MATHEMATICA
ContinuedFraction[Catalan, 100] (* G. C. Greubel, Aug 23 2018 *)
PROG
(PARI) default(realprecision, 100); contfrac(Catalan) \\ G. C. Greubel, Aug 23 2018
(Magma) R:= RealField(100); ContinuedFraction(Catalan(R)); // G. C. Greubel, Aug 23 2018
CROSSREFS
Cf. A006752 (decimal expansion of Catalan's constant).
Cf. A099789 (high water marks), A099790 (positions of high water marks).
Sequence in context: A242553 A113513 A092030 * A160928 A105162 A010184
KEYWORD
nonn,cofr
STATUS
approved