login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115874
Integers i such that 19*i = 55 X i.
4
0, 7, 14, 28, 31, 56, 62, 63, 112, 119, 124, 126, 127, 224, 238, 248, 252, 254, 255, 448, 455, 476, 496, 504, 508, 510, 511, 896, 910, 952, 992, 1008, 1016, 1020, 1022, 1023, 1792, 1799, 1820, 1823, 1904, 1911, 1984, 1991, 2016, 2032, 2040, 2044
OFFSET
1,2
COMMENTS
Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
From Robert Israel, Apr 08 2018: (Start)
n is in the sequence if and only if 2*n is.
If n is in the sequence, then so is (2^k+1)*n if 2^k > n.
Contains 2^k-1 for k >= 5. (End)
MAPLE
X:= proc(a, b) local A, B, C;
A:= convert(a, base, 2);
B:= convert(b, base, 2);
C:= expand(add(A[i]*x^(i-1), i=1..nops(A))*add(B[i]*x^(i-1), i=1..nops(B))) mod 2;
eval(C, x=2)
end proc:
select(t -> 19*t = X(55, t), [$0..10^4]); # Robert Israel, Apr 08 2018
MATHEMATICA
X[a_, b_] := Module[{A, B, C},
A = Reverse@IntegerDigits[a, 2];
B = Reverse@IntegerDigits[b, 2];
C = Expand[
Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
PolynomialMod[C, 2] /. x -> 2];
Select[Range[0, 10^4], 19*# == 55~X~#&] (* Jean-François Alcover, Jan 04 2022, after Robert Israel *)
CROSSREFS
Row 19 of A115872. Superset of A115876? A115875 shows this sequence in binary.
Sequence in context: A232790 A095894 A104599 * A083495 A185066 A089644
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 07 2006
EXTENSIONS
Offset corrected by Robert Israel, Apr 08 2018
STATUS
approved