The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059906 Index of second half of decomposition of integers into pairs based on A000695. 25
 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS One coordinate of a recursive non-self-intersecting walk on the square lattice Z^2. LINKS Rémy Sigrist, Table of n, a(n) for n = 0..8192 FORMULA n = A000695(A059905(n)) + 2*A000695(a(n)) To get a(n), write n as Sum b_j*2^j, then a(n) = Sum b_(2j+1)*2^j. - Vladimir Shevelev, Nov 13 2008 a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=0 and b(k)=A077957(k-1) for k>0. - Philippe Deléham, Oct 18 2011 Conjecture: a(n) = n - Sum(k=1..n, sqrt(2)^A007814(k)+(-sqrt(2))^A007814(k))/2 = -Sum(k=1..n, (-1)^k * 2^floor(k/2) * floor(n/2^k)). - Velin Yanev, Dec 01 2016 EXAMPLE A000695(A059905(14)) + 2*A000695(a(14)) = A000695(2) + 2*A000695(3) = 4 + 2*5 = 14. If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(27) = b_1 + b_3*2 = 3. - Vladimir Shevelev, Nov 13 2008 MATHEMATICA a[n_] := Module[{P}, (P = Partition[IntegerDigits[n, 2]//Reverse, 2][[All, 2]]).(2^(Range[Length[P]]-1))]; Array[a, 105, 0] (* Jean-François Alcover, Apr 24 2019 *) PROG (Python) def a(n):     x=map(int, list(bin(n)[2:]))[::-1] return sum([x[2*i + 1]*2**i for i in range(int(len(x)/2))]) print [a(n) for n in range(105)] # Indranil Ghosh, Jun 25 2017 (PARI) A059906(n) = { my(t=1, s=0); while(n>0, s += ((n%4)>=2)*t; n \= 4; t *= 2); (s); }; \\ Antti Karttunen, Apr 14 2018 CROSSREFS Cf. A000695, A057300, A059905. Sequence in context: A213202 A234972 A130326 * A112046 A076902 A287271 Adjacent sequences:  A059903 A059904 A059905 * A059907 A059908 A059909 KEYWORD easy,look,nonn AUTHOR Marc LeBrun, Feb 07 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 20:05 EDT 2020. Contains 337173 sequences. (Running on oeis4.)