login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002951
Continued fraction for fifth root of 5.
(Formerly M0059)
4
1, 2, 1, 1, 1, 2, 1, 2, 8, 1, 25, 1, 5, 1, 22, 1, 8, 1, 1, 9, 1, 1, 4, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 6, 2, 46, 1, 12, 1, 32, 1, 2, 3, 2, 3, 55, 1, 12, 3, 8, 1, 1, 11, 1, 4, 1, 1, 1, 2, 1, 1, 7, 1, 1, 4, 3, 3, 3218, 1, 3, 1, 2, 2, 3, 1, 1, 2, 11, 1, 7, 57, 2, 2, 2, 2, 1, 1, 67, 1, 2, 3, 1, 1, 13, 3
OFFSET
0,2
COMMENTS
Fifth root of 5 = 5^(1/5). - Harry J. Smith, May 10 2009
REFERENCES
H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
EXAMPLE
1.379729661461214832390063464... = 1 + 1/(2 + 1/(1 + 1/(1 + 1/(1 + ...)))). - Harry J. Smith, May 10 2009
MAPLE
with(numtheory): cfrac(5^(1/5), 100, 'quotients'); # Muniru A Asiru, Nov 02 2018
MATHEMATICA
ContinuedFraction[5^(1/5), 100] (* G. C. Greubel, Nov 02 2018 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(5^(1/5)); for (n=1, 20000, write("b002951.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 10 2009
(Magma) SetDefaultRealField(RealField(100)); ContinuedFraction(5^(1/5)); // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A005534 (decimal expansion).
Cf. A002363, A002364 (convergents).
Sequence in context: A241597 A374164 A165194 * A331287 A365105 A093993
KEYWORD
nonn,cofr
EXTENSIONS
More terms copied from Smith's b-file by Hagen von Eitzen, Jul 20 2009
Offset changed by Andrew Howroyd, Jul 05 2024
STATUS
approved