login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002951
Continued fraction for fifth root of 5.
(Formerly M0059)
4
1, 2, 1, 1, 1, 2, 1, 2, 8, 1, 25, 1, 5, 1, 22, 1, 8, 1, 1, 9, 1, 1, 4, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 6, 2, 46, 1, 12, 1, 32, 1, 2, 3, 2, 3, 55, 1, 12, 3, 8, 1, 1, 11, 1, 4, 1, 1, 1, 2, 1, 1, 7, 1, 1, 4, 3, 3, 3218, 1, 3, 1, 2, 2, 3, 1, 1, 2, 11, 1, 7, 57, 2, 2, 2, 2, 1, 1, 67, 1, 2, 3, 1, 1, 13, 3
OFFSET
0,2
COMMENTS
Fifth root of 5 = 5^(1/5). - Harry J. Smith, May 10 2009
REFERENCES
H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
EXAMPLE
1.379729661461214832390063464... = 1 + 1/(2 + 1/(1 + 1/(1 + 1/(1 + ...)))). - Harry J. Smith, May 10 2009
MAPLE
with(numtheory): cfrac(5^(1/5), 100, 'quotients'); # Muniru A Asiru, Nov 02 2018
MATHEMATICA
ContinuedFraction[5^(1/5), 100] (* G. C. Greubel, Nov 02 2018 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(5^(1/5)); for (n=1, 20000, write("b002951.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 10 2009
(Magma) SetDefaultRealField(RealField(100)); ContinuedFraction(5^(1/5)); // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A005534 (decimal expansion).
Cf. A002363, A002364 (convergents).
Sequence in context: A374164 A074807 A165194 * A331287 A365105 A093993
KEYWORD
nonn,cofr
EXTENSIONS
More terms copied from Smith's b-file by Hagen von Eitzen, Jul 20 2009
Offset changed by Andrew Howroyd, Jul 05 2024
STATUS
approved