The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047604 Numbers that are congruent to {2, 3, 5} mod 8. 1
 2, 3, 5, 10, 11, 13, 18, 19, 21, 26, 27, 29, 34, 35, 37, 42, 43, 45, 50, 51, 53, 58, 59, 61, 66, 67, 69, 74, 75, 77, 82, 83, 85, 90, 91, 93, 98, 99, 101, 106, 107, 109, 114, 115, 117, 122, 123, 125, 130, 131, 133, 138, 139, 141, 146, 147, 149, 154, 155, 157 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA From Chai Wah Wu, May 29 2016: (Start) a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. G.f.: x*(x + 1)*(3*x^2 - x + 2)/((x - 1)^2*(x^2 + x + 1)). (End) From Wesley Ivan Hurt, Jun 10 2016: (Start) a(n) = 8*n/3-2-cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)). a(3k) = 8k-3, a(3k-1) = 8k-5, a(3k-2) = 8k-6. (End) MAPLE A047604:=n->8*n/3-2-cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047604(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016 MATHEMATICA Flatten[#+{2, 3, 5}&/@(8*Range[0, 20])] (* Harvey P. Dale, Oct 17 2013 *) LinearRecurrence[{1, 0, 1, -1}, {2, 3, 5, 10}, 50] (* G. C. Greubel, May 29 2016 *) PROG (MAGMA) [n : n in [0..150] | n mod 8 in [2, 3, 5]]; // Wesley Ivan Hurt, May 29 2016 CROSSREFS Sequence in context: A246392 A219860 A076681 * A104427 A259732 A192229 Adjacent sequences:  A047601 A047602 A047603 * A047605 A047606 A047607 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 9 10:52 EDT 2020. Contains 333348 sequences. (Running on oeis4.)