login
A246392
Numbers n such that Phi(10, n) is prime, where Phi is the cyclotomic polynomial.
41
2, 3, 5, 10, 11, 12, 16, 20, 21, 22, 33, 37, 38, 43, 47, 48, 55, 71, 75, 76, 80, 81, 111, 121, 126, 131, 133, 135, 136, 141, 155, 157, 158, 165, 176, 177, 180, 203, 223, 242, 245, 251, 253, 256, 257, 258, 265, 268, 276, 286, 290, 297, 307, 322, 323, 342, 361, 363, 366, 375, 377, 385, 388, 396, 411
OFFSET
1,1
COMMENTS
Numbers n such that (n^5+1)/(n+1) is prime, or numbers n such that A060884(n) is prime.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 893 terms from Robert Price)
MAPLE
A246392:=n->`if`(isprime((n^5+1)/(n+1)), n, NULL): seq(A246392(n), n=1..500); # Wesley Ivan Hurt, Nov 15 2014
MATHEMATICA
Select[Range[700], PrimeQ[(#^5 + 1) / (# + 1)] &] (* Vincenzo Librandi, Nov 14 2014 *)
PROG
(PARI) for(n=1, 10^3, if(isprime(polcyclo(10, n)), print1(n, ", "))); \\ Joerg Arndt, Nov 13 2014
(Magma) [n: n in [1..500]| IsPrime((n^5+1) div (n+1))]; // Vincenzo Librandi, Nov 14 2014
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), this sequence (10), A162862 (11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).
Sequence in context: A094542 A175481 A288244 * A219860 A076681 A047604
KEYWORD
nonn
AUTHOR
Eric Chen, Nov 13 2014
STATUS
approved