OFFSET
1,2
COMMENTS
It seems numbers of the form k^n*(k^n+1)+1 with n > 0, k > 1 may be primes only if n has the form 3^j. When n is even, k^(4*n)+k^(2*n)+1=(k^(2*n)+1)^2-(k^n)^2=(k^(2*n)+k^n+1)*(k^(2*n)-k^n+1) so composite. But why if n odd > 3 and not a power of 3, k^n*(k^n+1)+1 is always composite?
LINKS
Pierre CAMI, Table of n, a(n) for n=1,...,38019
MATHEMATICA
k9pQ[n_]:=Module[{c=n^9}, PrimeQ[c(c+1)+1]]; Select[Range[1200], k9pQ] (* Harvey P. Dale, Oct 29 2014 *)
Select[Range[1100], PrimeQ[(#^9 (#^9 + 1)) + 1] &] (* Vincenzo Librandi, Jan 17 2015 *)
PROG
(Magma) [n: n in [0..1100] | IsPrime(n^9*(n^9+1)+1)]; // Vincenzo Librandi, Jan 17 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Dec 26 2008
STATUS
approved