login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059252 Hilbert's Hamiltonian walk on N X N projected onto x axis: m(3). 15
0, 0, 1, 1, 2, 3, 3, 2, 2, 3, 3, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 3, 4, 5, 5, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 5, 4, 4, 5, 5, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 14, 14, 15, 15, 14 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

This is the X-coordinate of the n-th term in the type I Hilbert's Hamiltonian walk A163359 and the Y-coordinate of its transpose A163357.

LINKS

A. Karttunen, Table of n, a(n) for n = 0..65535

FORMULA

Initially [m(0) = 0, m'(0) = 0]; recursion: m(2n + 1) = m(2n).m'(2n).f(m'(2n), 2n).c(m(2n), 2n + 1); m'(2n + 1) = m'(2n).f(m(2n), 2n).f(m(2n), 2n).mir(m'(2n)); m(2n) = m(2n - 1).f(m'(2n - 1), 2n - 1).f(m'(2n - 1), 2n - 1).mir(m(2n - 1)); m'(2n) = m'(2n - 1).m(2n - 1).f(m(2n - 1), 2n - 1).c(m'(2n - 1), 2n); where f(m, n) is the alphabetic morphism i := i + 2^n [example: f(0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, 2) = 4 4 5 5 6 7 7 6 6 7 7 6 5 5 4 4]; c(m, n) is the complementation to 2^n - 1 alphabetic morphism [example: c(0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, 3) = 7 7 6 6 5 4 4 5 5 4 4 5 6 6 7 7]; and mir(m) is the mirror operator [example: mir(0 1 1 0 0 0 1 1 2 2 3 3 3 2 2 3) = 3 2 2 3 3 3 2 2 1 1 0 0 0 1 1 0].

a(n) = A002262(A163358(n)) = A025581(A163360(n)) = A059906(A163356(n)).

EXAMPLE

[m(1)=0 0 1 1, m'(1)= 0 1 10] [m(2) =0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, m'(2)=0 1 1 0 0 0 1 1 2 2 3 3 3 2 2 3]

CROSSREFS

See also the y-projection, m'(3), A059253, as well as: A163539, A163540, A163542, A059261, A059285, A163547 and A163529.

Sequence in context: A096007 A269043 A309952 * A251619 A030620 A110764

Adjacent sequences:  A059249 A059250 A059251 * A059253 A059254 A059255

KEYWORD

nonn

AUTHOR

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 23 2001

EXTENSIONS

Extended by Antti Karttunen, Aug 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)