|
|
A163359
|
|
Hilbert curve in N x N grid, starting downwards from the top-left corner, listed by descending antidiagonals.
|
|
22
|
|
|
0, 3, 1, 4, 2, 14, 5, 7, 13, 15, 58, 6, 8, 12, 16, 59, 57, 9, 11, 17, 19, 60, 56, 54, 10, 30, 18, 20, 63, 61, 55, 53, 31, 29, 23, 21, 64, 62, 50, 52, 32, 28, 24, 22, 234, 65, 67, 49, 51, 33, 35, 27, 25, 233, 235, 78, 66, 68, 48, 46, 34, 36, 26, 230, 232, 236, 79, 77, 71
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
A. Karttunen, Table of n, a(n) for n = 0..32895
David Hilbert, Ueber die stetige Abbildung einer Linie auf ein Flächenstück, Mathematische Annalen, volume 38, number 3, 1891, pages 459-460. Also EUDML (link to GDZ).
Eric Weisstein's World of Mathematics, Hilbert curve
Wikipedia, Self-avoiding walk
Wikipedia, Space-filling curve
Index entries for sequences that are permutations of the nonnegative integers
|
|
EXAMPLE
|
The top left 8x8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
+0 +3 +4 +5 58 59 60 63
+1 +2 +7 +6 57 56 61 62
14 13 +8 +9 54 55 50 49
15 12 11 10 53 52 51 48
16 17 30 31 32 33 46 47
19 18 29 28 35 34 45 44
20 23 24 27 36 39 40 43
21 22 25 26 37 38 41 42
|
|
MATHEMATICA
|
b[{n_, k_}, {m_}] := (A[n, k] = m-1);
MapIndexed[b, List @@ HilbertCurve[4][[1]]];
Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
|
|
CROSSREFS
|
Transpose: A163357, a(n) = A163357(A061579(n)). Inverse: A163360. One-based version: A163363. Row sums: A163365. Row 0: A163483. Column 0: A163482. Central diagonal: A062880.
See also A163334 and A163336 for the Peano curve.
Sequence in context: A240058 A275896 A340754 * A065256 A016573 A191818
Adjacent sequences: A163356 A163357 A163358 * A163360 A163361 A163362
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Antti Karttunen, Jul 29 2009
|
|
STATUS
|
approved
|
|
|
|