This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059250 Square array read by antidiagonals: T(k,n) = binomial(n-1, k) + Sum_{i=0..k} binomial(n, i), k >= 1, n >= 0. 6
 1, 1, 2, 1, 2, 4, 1, 2, 4, 6, 1, 2, 4, 8, 8, 1, 2, 4, 8, 14, 10, 1, 2, 4, 8, 16, 22, 12, 1, 2, 4, 8, 16, 30, 32, 14, 1, 2, 4, 8, 16, 32, 52, 44, 16, 1, 2, 4, 8, 16, 32, 62, 84, 58, 18, 1, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 1, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 1, 2, 4, 8, 16, 32, 64 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS T(k,n) = maximal number of regions into which k-space can be divided by n hyper-spheres (k >= 1, n >= 0). For all fixed k, the sequences T(k,n) are complete. - Frank M Jackson, Jan 26 2012 T(k-1,n) is also the number of regions created by n generic hyperplanes through the origin in k-space (k >= 2). - Kent E. Morrison, Nov 11 2017 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4. LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened K. E. Morrison, From bocce to positivity: some probabilistic linear algebra, Math. Mag., 86 (2013) 110-119. L. SchlĂ¤fli, Theorie der vielfachen KontinuitĂ¤t, 1901. (See p. 41) J. G. Wendel, A problem in geometric probability, Math. Scand., 11 (1962) 109-111. FORMULA T(k,n) =  2 * Sum_{i=0..k-1} binomial(n-1, i), k >= 1, n >= 1. - Kent E. Morrison, Nov 11 2017 EXAMPLE Array begins   1, 2, 4, 6,  8, 10, 12, ...   1, 2, 4, 8, 14, 22, ...   1, 2, 4, 8, 16, ... MATHEMATICA getvalue[n_, k_] := If[n==0, 1, Binomial[n-1, k]+Sum[Binomial[n, i], {i, 0, k}]]; lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@     IntegerPartitions[#1 + dim - 1, {dim}], 1] &, maxHeight], 1]; pairs=lexicographicLattice[{2, 13}]-1; Table[getvalue[First[pairs[[j]]], Last[pairs[[j]]]+1], {j, 1, Length[pairs]}] (* Frank M Jackson, Mar 16 2013 *) CROSSREFS Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5). Apart from border, same as A059214. If the k=0 row is included, same as A178522. Sequence in context: A141539 A243851 A168266 * A303696 A131074 A059268 Adjacent sequences:  A059247 A059248 A059249 * A059251 A059252 A059253 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Feb 15 2001 EXTENSIONS Corrected and edited by N. J. A. Sloane, Aug 31 2011, following a suggestion from Frank M Jackson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 04:33 EST 2018. Contains 318141 sequences. (Running on oeis4.)