This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059250 Square array read by antidiagonals: T(k,n) = C(n-1, k) + Sum_{i=0..k} C(n, i), k >=1, n >= 0. 5

%I

%S 1,1,2,1,2,4,1,2,4,6,1,2,4,8,8,1,2,4,8,14,10,1,2,4,8,16,22,12,1,2,4,8,

%T 16,30,32,14,1,2,4,8,16,32,52,44,16,1,2,4,8,16,32,62,84,58,18,1,2,4,8,

%U 16,32,64,114,128,74,20,1,2,4,8,16,32,64,126,198,186,92,22,1,2,4,8,16,32,64

%N Square array read by antidiagonals: T(k,n) = C(n-1, k) + Sum_{i=0..k} C(n, i), k >=1, n >= 0.

%C T(k,n) = maximal number of regions into which k-space can be divided by n hyper-spheres (k >= 1, n >= 0).

%C For all fixed k, the sequences T(k,n) are complete. [_Frank M Jackson_, Jan 26, 2012]

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

%e Array begins

%e 1 2 4 6 8 10 12 ...

%e 1 2 4 8 14 22 ...

%e 1 2 4 8 16 ...

%t getvalue[n_, k_] := If[n==0, 1, Binomial[n-1, k]+Sum[Binomial[n, i],{i, 0,k}]]; lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@ IntegerPartitions[#1 + dim - 1, {dim}], 1] &, maxHeight], 1]; pairs=lexicographicLattice[{2, 13}]-1; Table[getvalue[First[pairs[[j]]], Last[pairs[[j]]]+1], {j, 1, Length[pairs]}] (* _Frank M Jackson_, Mar 16 2013 *)

%Y Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).

%Y Apart from border, same as A059214. If the k=0 row is included, same as A178522.

%K nonn,tabl

%O 1,3

%A _N. J. A. Sloane_, Feb 15 2001

%E Corrected and edited by _N. J. A. Sloane_, Aug 31 2011, following a suggestion from Frank M. Jackson.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified June 20 03:54 EDT 2013. Contains 226418 sequences.