login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014206 n^2 + n + 2. 27
2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Draw n+1 circles in the plane; sequence gives maximal number of regions into which the plane is divided (a(n) = A002061(n+1) + 1 for n>=0). Cf. A051890.

Number of binary (zero-one) bitonic sequences of length n+1. - Johan Gade (jgade(AT)diku.dk), Oct 15 2003

Also the number of permutations of n+1 which avoid the patterns 213, 312, 13452 and 34521. Example: the permutations of 4 which avoid 213, 312 (and implicitly 13452 and 34521) are 1234, 1243, 1342, 1432, 2341, 2431, 3421, 4321. - Mike Zabrocki, Jul 09 2007

If Y is a 2-subset of an n-set X then, for n>=3, a(n-3) is equal to the number of (n-3)-subsets and (n-1)-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007

With a different offset, competition number of the complete tripartite graph K_{n,n,n}. [ Kim, Sano] - Jonathan Vos Post, May 14 2009. Cf. A160450, A160457.

REFERENCES

K. E. Batcher: Sorting Networks and their Applications. Proc. AFIPS Spring Joint Comput. Conf., Vol. 32, pp. 307-314 (1968). [for bitonic sequences]

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.

T. H. Cormen, C. E. Leiserson and R. L. Rivest: Introduction to Algorithms. MIT Press / McGraw-Hill (1990) [for bitonic sequences]

Indiana School Mathematics Journal, vol. 14, no. 4, 1979, p. 4.

S.-R. Kim and Y. Sano: The competition numbers of complete tripartite graphs, Discrete Appl. Math., 156 (2008) 3522-3524.

D. E. Knuth, The art of computer programming, vol3: Sorting and Searching, Addison-Wesley (1973) [for bitonic sequences]

J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 177.

Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83. [From Robert G. Wilson v, May 21 2010]

A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964)

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..1000

Guo-Niu Han, Enumeration of Standard Puzzles

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

H. W. Lang, Bitonic sequences

J. C. Novelli and A. Schilling, The Forgotten Monoid, arXiv 0706.2996

Parabola, vol. 24, no. 1, 1988, p. 22, Problem #Q736.

Yoshio Sano, The competition numbers of regular polyhedra, May 12, 2009.

Jeffrey Shallit, mentions this function in a blog post as the solution for small n to a problem involving boolean matrices whose values for larger n are unknown.

Eric Weisstein's World of Mathematics, Plane Division by Circles

Index entries for sequences related to linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: 2*x*(x^2-x+1)/(1-x)^3.

n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i=0..k} C(n, i) regions.

a(n) = A002061(n+1) + 1 for n>=0. - Rick L. Shepherd, May 30 2005

((binomial(n+3,n+1)-binomial(n+1,n))*(binomial(n+3,n+2)-binomial(n+1,n)). - Zerinvary Lajos, May 12 2006

Equals binomial transform of [2, 2, 2, 0, 0, 0,...]. - Gary W. Adamson, Jun 18 2008

a(n)=A003682(n+1), n>0. [R. J. Mathar, Oct 28 2008]

a(n)=a(n-1)+2*n  (with a(0)=2) [Vincenzo Librandi, Nov 20 2010]

a(0)=2, a(1)=4, a(2)=8, a(n)=3*a(n-1)-3*a(n-2)+a(n-3) [Harvey P. Dale, May 14 2011]

EXAMPLE

a(0) = 0^2+0+2 = 2, a(1) = 1^2+1+2 =4, a(2) = 2^2+2+2 = 8, etc.

MAPLE

A014206 := n->n^2+n+2;

with (combinat):seq(fibonacci(3, n)+n+1, n=0..50); - Zerinvary Lajos, Jun 07 2008

MATHEMATICA

Table[n^2 + n + 2, {n, 0, 50}] - Stefan Steinerberger, Apr 08 2006

LinearRecurrence[{3, -3, 1}, {2, 4, 8}, 50] (* Harvey P. Dale, May 14 2011 *)

PROG

(PARI) a(n)=n^2+n+2 \\ Charles R Greathouse IV, Jul 31 2011

CROSSREFS

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5). A row of A059250.

Cf. A000124, A051890. Also A033547=partial sums of A014206.

Cf. A002061 (Central polygonal numbers).

Cf. A002522, A051890.

Sequence in context: A194694 A194692 A155506 * A025196 A084626 A090533

Adjacent sequences:  A014203 A014204 A014205 * A014207 A014208 A014209

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Stefan Steinerberger, Apr 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 16 03:40 EDT 2014. Contains 240534 sequences.