This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059174 Maximal number of regions into which 5-space can be divided by n hyper-spheres. 7
 1, 2, 4, 8, 16, 32, 64, 126, 240, 438, 764, 1276, 2048, 3172, 4760, 6946, 9888, 13770, 18804, 25232, 33328, 43400, 55792, 70886, 89104, 110910, 136812, 167364, 203168, 244876, 293192, 348874, 412736, 485650, 568548, 662424, 768336, 887408, 1020832, 1169870 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS n hyperspheres divide R^k into at most binomial(n-1, k) + Sum_{i=0..k} binomial(n, i) regions. REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4. LINKS Muniru A Asiru, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA a(n) = binomial(n-1, 5) + Sum_{i=0..5} binomial(n, i). G.f.: (x^6 + 3*x^4 - 6*x^3 + 7*x^2 - 4*x + 1)/(x - 1)^6. - Colin Barker, Oct 06 2012 a(n) = 2*A006261(n-1), for n > 0. - Günter Rote, Dec 18 2018, by elementary manipulations. E.g.f.: 1 + (1/60)*(120*x + 20*x^3 + x^5)*exp(x). - Franck Maminirina Ramaharo, Dec 21 2018 MAPLE seq(coeff(series((x^6+3*x^4-6*x^3+7*x^2-4*x+1)/(1-x)^6, x, n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Dec 18 2018 MATHEMATICA Join[{1}, Table[((n^5 - 5 n^4 + 25 n^3 + 5 n^2 + 94 n + 120) / 60), {n, 0, 50}]] (* Vincenzo Librandi, Dec 21 2018 *) PROG (PARI) a(n) = binomial(n-1, 5) + sum(i=0, 5, binomial(n, i)); \\ Michel Marcus, Jan 29 2016 (GAP) Concatenation([1], List([1..40], n-> Binomial(n-1, 5) + Sum([0..5], i-> Binomial(n, i)))); # Muniru A Asiru, Dec 18 2018 (MAGMA) [1] cat [(n^5-5*n^4+25*n^3+5*n^2+94*n+120)/60: n in [0..40]]; // Vincenzo Librandi, Dec 21 2018 CROSSREFS Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), this sequence (dim 5). Fifth row (k=5) of A059250. Cf. A006261. Sequence in context: A247213 A302934 A069050 * A258585 A235701 A054044 Adjacent sequences:  A059171 A059172 A059173 * A059175 A059176 A059177 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Feb 15 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)