This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059255 Both sum of n+1 consecutive squares and sum of the immediately following n consecutive squares. 9
 0, 25, 365, 2030, 7230, 19855, 45955, 94220, 176460, 308085, 508585, 802010, 1217450, 1789515, 2558815, 3572440, 4884440, 6556305, 8657445, 11265670, 14467670, 18359495, 23047035, 28646500, 35284900, 43100525, 52243425, 62875890, 75172930, 89322755 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The analog for sums of integers is A059270, and the analog for sums of triangular numbers is A222716. - Jonathan Sondow, Mar 07 2013 In 1879, Dostor gave formulas for all solutions--see the Dickson link. - Jonathan Sondow, Jun 21 2014 REFERENCES Georges Dostor, Question sur les nombres, Archiv der Mathematik und Physik, 64 (1879), 350-352. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 M. Boardman, Proof Without Words: Pythagorean Runs, Math. Mag., 73 (2000), 59. L. E. Dickson, History of the Theory of Numbers, II, p. 320. Greg Frederickson, Casting Light on Cube Dissections, Math. Mag., 82 (2009), 323-331. Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1). FORMULA a(n) = n(n + 1)(2n + 1)(12n^2 + 12n + 1)/6 = 4n^5 + 10n^4 + (25/2)n^3 + (5/2)n^2 + (1/6)n = A000330(A046092(n)) - A000330(A014107(n + 1)) = A000330(A014106(n)) - A000330(A046092(n)). G.f.: (5x(1+x)(5+x(38+5x)))/(x-1)^6. - Harvey P. Dale, May 09 2011 a(0)=0, a(1)=25, a(2)=365, a(3)=2030, a(4)=7230, a(5)=19855, a(n)= 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+6a(n-5)-a(n-6). - Harvey P. Dale, May 09 2011 a(n) = (4*T(n)-n)^2+(4*T(n)-n+1)^2+...+(4*T(n))^2 = (4*T(n)+1)^2+(4*T(n)+2)^2+...+(4*T(n)+n)^2, where T = A000217. See Boardman (2000). - Jonathan Sondow, Mar 07 2013 a(0)=0, a(n) = 25 + 340*C(n-1,1) + 1325*C(n-1,2) + 2210*C(n-1,3) + 1680*C(n-1,4) + 480*C(n-1,5) for n >= 1, where C(a,b) are binomial coefficients. - Kieren MacMillan, Sep 16 2014 EXAMPLE a(3) = 2030 = 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2. MAPLE A059255:=n->n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6; seq(A059255(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014 MATHEMATICA Table[1/6(-1+n)(-n+14n^2-36n^3+24n^4), {n, 40}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {0, 25, 365, 2030, 7230, 19855}, 40] (* Harvey P. Dale, May 09 2011 *) PROG (MAGMA) [n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 : n in [0..50]]; // Wesley Ivan Hurt, Jun 21 2014 CROSSREFS The n+1 consecutive squares start with the square of A014105, while the n consecutive squares start with the square of A001844. Cf. also A059270, A222716. Cf. A234319 for nonexistence of analogs for sums of n-th powers, n > 2. - Jonathan Sondow, Apr 23 2014 Sequence in context: A197536 A045622 A130052 * A227024 A254376 A022749 Adjacent sequences:  A059252 A059253 A059254 * A059256 A059257 A059258 KEYWORD nice,nonn AUTHOR Henry Bottomley, Jan 23 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 02:57 EST 2018. Contains 317371 sequences. (Running on oeis4.)