login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059285 Hilbert's Hamiltonian walk projected onto the second diagonal: M'(3) (difference between sequences A059253 and A059252; their sum is A059261). 4
0, 1, 0, -1, -2, -3, -2, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 7, 6, 5, 4, 5, 4, 3, 2, 3, 2, 1, 0, -1, 0, 1, 2, 3, 2, 1, 0, 1, 0, -1, -2, -1, -2, -3, -4, -5, -4, -3, -2, -1, -2, -3, -4, -3, -4, -5, -6, -5, -6, -7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..63.

FORMULA

Initially, M'(0)=0; recursion: M'(2n)=M'(2n-1). (-f(-M'(2n-1), 2n-1)).(-M'(2n-1)).f(-M'(2n-1), 2n-1), M'(2n+1)=M'(2n).f(M'(2n), 2n).(-M'(2n)).(-(f(M'(2n), 2n+1)). f(m, n) is the complementation to 2^n, [example: f(4 3 4 5 6 7 6 5 4 5 4 6 2 3 2 1, 3)=4 5 4 3 2 1 2 3 4 3 4 5 6 5 6 7]; (-m) is the opposite[example: m=4 5 4 3 2 1 2 3 4 3 4 5 6 5 6 7, (-m)=-4 -5 -4 -3 -2 -1 -2 -3 -4 -3 -4 -5 -6 -5 -6 -7]

EXAMPLE

[M'(0)=0, M'(1)=0 1 0 -1, M'(2)=0 1 0 -1 -2 -3 -2 -1 0 -1 0 1 2 1 2 3]

CROSSREFS

The x-projection m(3) is A059253, the y-projection m(3) is A059252 and the projection onto the first diagonal, M(3), is A059261.

Sequence in context: A122445 A189511 A165592 * A165578 A020990 A260686

Adjacent sequences:  A059282 A059283 A059284 * A059286 A059287 A059288

KEYWORD

sign

AUTHOR

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 24 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 05:27 EST 2016. Contains 278761 sequences.