|
|
A059261
|
|
Hilbert's Hamiltonian walk on N X N projected onto the first diagonal: M(3) (sum of the sequences A059252 and A059253).
|
|
6
|
|
|
0, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 8, 7, 6, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 12, 11, 10, 11, 10, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 12, 11, 10, 11, 12, 13, 14, 13, 14, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The interest comes from a simplest recursion than the cross-recursion, dependent on parity, governing the projections onto the x and y axis.
|
|
LINKS
|
A. Karttunen, Table of n, a(n) for n = 0..65535
|
|
FORMULA
|
Initially, M(0)=0; recursion: M(n+1)=M(n).f(M(n), n).f(M(n), n+1).d(M(n), n); -f(m, n) is the alphabetic morphism i := i+2^n; [example: f(0 1 2 1 2 3 4 3 4 5 6 5 4 3 2 3, 2)=4 5 6 5 6 7 8 7 8 9 10 9 8 7 6 7 ] -d(m, n) is the complementation to 2^(n-1)*3-2, alphabetic morphism; [example: d(0 1 2 1 2 3 4 3 4 5 6 5 4 3 2 3, 3)=10 9 8 9 8 7 6 7 6 5 4 5 6 7 8 7] Here is M(3). [M(1)=0.1.2.1, M(2)=0 1 2 1.2 3 4 3.4 5 6 5.4 3 2 3]
|
|
CROSSREFS
|
Cf. the x-projection m(3), A059252 and the y-projection m'(3), A059253. See also: A163530, A059285, A163547.
Sequence in context: A030330 A286579 A293689 * A285869 A162330 A134967
Adjacent sequences: A059258 A059259 A059260 * A059262 A059263 A059264
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 24 2001
|
|
EXTENSIONS
|
Extended by Antti Karttunen, Aug 01 2009
|
|
STATUS
|
approved
|
|
|
|