OFFSET
1,2
COMMENTS
Numbers k up to 10^8 have been tested. Tutescu's conjecture is the case n=1.
REFERENCES
L. Tutescu, "On a Conjecture Concerning the Smarandache Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.
LINKS
Eric Weisstein's World of Mathematics, Smarandache Function
MATHEMATICA
(*See A002034 for the Kempner function*) nMax=22; iMax=10^6; iTab=Table[{}, {nMax}]; cTab=Table[0, {nMax}]; a=Table[Kempner[i], {i, nMax+1}]; Do[If[a[[i]]==a[[i-n]], cTab[[n]]++; AppendTo[iTab[[n]], i]], {n, nMax}, {i, n+1, nMax+1}]; Do[a=RotateLeft[a]; a[[nMax+1]]=Kempner[i]; Do[If[a[[nMax+1]]==a[[nMax-n+1]], cTab[[n]]++; AppendTo[iTab[[n]], i]], {n, nMax}], {i, nMax+2, iMax}]; Table[If[iTab[[n]]=={}, 0, Last[iTab[[n]]]], {n, nMax}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 28 2004
STATUS
approved