OFFSET
3,1
COMMENTS
Consider the set Sn of d(n!)-d((n-1)!) positive integers k with S(k) = n, where d is the divisor counting function A000005. For each n, a(n) gives the least difference of integers in the set Sn. For prime n, a(n) = n. For n a power of a prime, a(n) = A046021(n), the least k in Sn. The Tutescu conjecture, which states that the equation S(k) = S(k+1) has no solutions, is equivalent to a(n) > 1 for all n.
REFERENCES
L. Tutescu, "On a Conjecture Concerning the Smarandache Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.
LINKS
Eric Weisstein's World of Mathematics, Smarandache Function
EXAMPLE
a(6) = 2 because S(k) = 6 for k = 9, 16, 18, 36, 45, 48, 72, 80, 90, 144, 180, 240, 360, 720 and the least difference is 2, between 16 and 18.
MATHEMATICA
(*See A002034 for the Kempner function*) a=Table[Kempner[n], {n, 10!}]; Table[lst=Flatten[Position[a, n]]; mn=Infinity; Do[mn=Min[mn, lst[[i+1]]-lst[[i]]], {i, Length[lst]-1}]; mn, {n, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 28 2004
STATUS
approved