

A047253


Numbers that are congruent to {1, 2, 3, 4, 5} mod 6.


16



1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Numbers that are not divisible by 6.  Benoit Cloitre, Jul 11 2009
More generally the sequence a(n,m) of numbers not divisible by some fixed integer m >= 2 is given by a(n,m) = n  1 + floor((n+m2)/(m1)).  Benoit Cloitre, Jul 11 2009
A122841(a(n)) = 0.  Reinhard Zumkeller, Nov 10 2013


LINKS

Ivan Panchenko, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,1).


FORMULA

a(n) = 5 + a(n5).
G.f.: x*(1+x)*(1+x+x^2)*(x^2x+1) / ( (x^4+x^3+x^2+x+1)*(x1)^2 ).
a(n) = n  1 + floor((n+4)/5).  Benoit Cloitre, Jul 11 2009


MATHEMATICA

Select[Table[n, {n, 200}], Mod[#, 6]!=0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011*)


PROG

(PARI) a(n)= 1+n+n\5
(PARI) a(n)=n1+floor((n+4)/5) \\ Benoit Cloitre, Jul 11 2009
(Haskell)
a047253 n = n + n `div` 5
a047253_list = [1..5] ++ map (+ 6) a047253_list
 Reinhard Zumkeller, Nov 10 2013


CROSSREFS

Cf. A097325.
Sequence in context: A194386 A187390 A039215 * A248910 A254278 A204878
Adjacent sequences: A047250 A047251 A047252 * A047254 A047255 A047256


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

Extended by R. J. Mathar, Oct 18 2008


STATUS

approved



