OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
a(n) = floor((8*n-2)/3). - Gary Detlefs, Mar 13 2010
From Wesley Ivan Hurt, Jun 09 2016: (Start)
G.f.: x*(2+2*x+3*x^2+x^3)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-9+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-4, a(3k-2) = 8k-6. (End)
MAPLE
seq(floor((8*n-3)/3), n=1..51); # Gary Detlefs, Mar 07 2010
MATHEMATICA
Table[Floor[(8 n - 2)/3], {n, 50}] (* Wesley Ivan Hurt, Feb 15 2014 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [2, 4, 7]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved