login
A047536
Numbers that are congruent to {0, 4, 7} mod 8.
2
0, 4, 7, 8, 12, 15, 16, 20, 23, 24, 28, 31, 32, 36, 39, 40, 44, 47, 48, 52, 55, 56, 60, 63, 64, 68, 71, 72, 76, 79, 80, 84, 87, 88, 92, 95, 96, 100, 103, 104, 108, 111, 112, 116, 119, 120, 124, 127, 128, 132, 135, 136, 140, 143, 144, 148, 151, 152, 156, 159
OFFSET
1,2
FORMULA
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
G.f.: x^2*(x^2 + 3*x + 4)/(x^4 - x^3 - x + 1). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n-15+6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-4, a(3k-2) = 8k-8. (End)
MAPLE
A047536:=n->(24*n-15+6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047536(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {0, 4, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 4, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
Sequence in context: A162967 A070286 A324978 * A093494 A310934 A310935
KEYWORD
nonn,easy
STATUS
approved