login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002486 Apart from two leading terms (which are present by convention), denominators of convergents to Pi (A002485 and A046947 give numerators).
(Formerly M4456 N1886)
26
1, 0, 1, 7, 106, 113, 33102, 33215, 66317, 99532, 265381, 364913, 1360120, 1725033, 25510582, 52746197, 78256779, 131002976, 340262731, 811528438, 1963319607, 4738167652, 6701487259, 567663097408, 1142027682075, 1709690779483, 2851718461558, 44485467702853 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Disregarding first two terms, integer diameters of circles beginning with 1 and a(n+1) is the smallest integer diameter with corresponding circumference nearer an integer than is the circumference of the circle with diameter a(n). See PARI program. - Rick L. Shepherd, Oct 06 2007

a(n+1) = numerator of fraction obtained from truncated continued fraction expansion of 1/Pi to n terms. - Artur Jasinski, Mar 25 2008

REFERENCES

P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 171 (but beware errors).

E. B. Burger, Diophantine Olympics ..., Amer. Math. Monthly, 107 (Nov. 2000), 822-829.

CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.

P. Finsler, Über die Faktorenzerlegung natuerlicher Zahlen, Elemente der Mathematik, 2 (1947), 1-11, see p. 7.

K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..201

Marc Daumas, Des implantations differentes ..., see p. 8.

Henryk Fuks, Adam Adamandy Kochanski's approximations of pi: reconstruction of the algorithm, Arxiv preprint arXiv:1111.1739, 2011. Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.

G. P. Michon, Continued Fractions

Eric Weisstein's World of Mathematics, Pi.

Eric Weisstein's World of Mathematics, Pi Continued Fraction

Eric Weisstein's World of Mathematics, Pi Approximations

Index entries for sequences related to the number Pi

EXAMPLE

The convergents are 3, 22/7, 333/106, 355/113, 103993/33102, ...

MAPLE

Digits := 60: E := Pi; convert(evalf(E), confrac, 50, 'cvgts'): cvgts;

with(numtheory):cf := cfrac (Pi, 100): seq(nthdenom (cf, i), i=-2..28 ); # Zerinvary Lajos, Feb 07 2007

MATHEMATICA

b = {1}; Do[c = Numerator[FromContinuedFraction[ContinuedFraction[1/Pi, n]]]; AppendTo[b, c], {n, 1, 30}]; b (* Artur Jasinski, Mar 25 2008 *)

Join[{1, 0}, Denominator[Convergents[Pi, 30]]] (* Harvey P. Dale, Sep 13 2013 *)

PROG

(PARI) /* Program calculates a(n) (slowly) without continued fraction function */ {c=frac(Pi); print1("1, 0, 1, "); for(diam=2, 500000000, cm=diam*Pi; cmin=min(cm-floor(cm), ceil(cm)-cm); \ if(cmin<c, print1(diam, ", "); c=cmin))} /* or could use cmin=min(frac(cm), 1-frac(cm)) above */ /* Rick L. Shepherd, Oct 06 2007 */

(PARI) for(i=1, #cf=contfrac(Pi), print1(contfracpnqn(vecextract(cf, 2^i-1))[2, 2]", ")) \\ - M. F. Hasler, Apr 01 2013

CROSSREFS

Cf. A002485 (numerators), A072398/A072399, A063674/A063673, A132049/A132050.

Sequence in context: A049210 A167814 A209545 * A203971 A145167 A141358

Adjacent sequences:  A002483 A002484 A002485 * A002487 A002488 A002489

KEYWORD

nonn,easy,nice,frac

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Extended and corrected by David Sloan, Sep 23, 2002.

First Mathematica program edited by Harvey P. Dale, Sep 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 2 17:41 EDT 2014. Contains 246363 sequences.