

A167814


Number of admissible basis in the postage stamp problem for n denominations and h = 7 stamps.


6




OFFSET

1,2


COMMENTS

A basis 1 = b_1 < b_2 ... < b_n is admissible if all the values 1 <= x <= b_n is obtainable as a sum of at most h (not necessarily distinct) numbers in the basis.


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, C12.


LINKS

Table of n, a(n) for n=1..7.
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206210.
M. F. Challis, Two new techniques for computing extremal hbases A_k, Comp J 36(2) (1993) 117126
Erich Friedman, Postage stamp problem
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377380.
S. Mossige, Algorithms for Computing the hRange of the Postage Stamp Problem, Math. Comp. 36 (1981) 575582


CROSSREFS

Other enumerations with different parameters: A167809 (h = 2), A167810 (h = 3), A167811 (h = 4), A167812 (h = 5), A167813 (h = 6), A167814 (h = 7).
For h = 2, cf. A008932.
Sequence in context: A238464 A096131 A049210 * A209545 A002486 A203971
Adjacent sequences: A167811 A167812 A167813 * A167815 A167816 A167817


KEYWORD

hard,more,nonn


AUTHOR

Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009


STATUS

approved



